
	

Continue

144854956216	17296811.956522	52128905.189189	2076085632	1196245252	14235432080	14560101.125	92130559.4	25978063.382716	19744339.443182	9217344.8888889	683852439	129094648808	89801165.47619	15422593216	14883913.583333	3893686.5384615	3685237305	48151533.888889	11509300.344444	25403047.145455
113270859793	9189802105	26930102.673913	114191812412	14671771.633333	24072319752	11599901.157895	158243195575	74174533.259259	104030582.53846	11082992130	350237398	27991854023	6613537378

https://loheb.co.za/XSRYdR1H?utm_term=python+crash+course+cheat+sheet+pdf+free+pdf+template

Python	crash	course	cheat	sheet	pdf	free	pdf	template

itertools.zip_longest(*iterables,	fillvalue=None)	Example:	>>>	colors	=	['red',	'orange',	'yellow',	'green',	'blue',]	>>>	data	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,]	>>>	for	each	in	itertools.zip_longest(colors,	data,	fillvalue=None):	>>>	print(each)	('red',	1)	('orange',	2)	('yellow',	3)	('green',	4)	('blue',	5)	(None,	6)	(None,	7)	(None,	8)	(None,	9)	(None,	10)
Comprehensions	List	comprehension	>>>	a	=	[1,	3,	5,	7,	9,	11]	>>>	[i	-	1	for	i	in	a]	[0,	2,	4,	6,	8,	10]	Set	comprehension	>>>	b	=	{"abc",	"def"}	>>>	{s.upper()	for	s	in	b}	{"ABC",	"DEF"}	Dict	comprehension	>>>	c	=	{'name':	'Pooka',	'age':	5}	>>>	{v:	k	for	k,	v	in	c.items()}	{'Pooka':	'name',	5:	'age'}	A	List	comprehension	can	be	generated	from	a
dictionary:	>>>	c	=	{'name':	'Pooka',	'first_name':	'Oooka'}	>>>	["{}:{}".format(k.upper(),	v.upper())	for	k,	v	in	c.items()]	['NAME:POOKA',	'FIRST_NAME:OOOKA']	Manipulating	Strings	Escape	Characters	Escape	character	Prints	as	\'	Single	quote	\"	Double	quote	\t	Tab	Newline	(line	break)	\\	Backslash	Example:	>>>	print("Hello	there!How	are
you?I\'m	doing	fine.")	Hello	there!	How	are	you?	You	will	need	to	import	Python’s	traceback	module	before	calling	this	function.	content	=	bacon_file.read()	>>>	print(content)	Hello	world!	Bacon	is	not	a	vegetable.	You	can	use	it	anywhere	you	want	to	match	one	of	many	expressions.	They	can	be	compared	to	other	objects	of	the	same	type.	It	allows
you	to	declare	the	libraries	your	project	depends	on	and	it	will	manage	(install/update)	them	for	you.	Install	it	with:	pip	install	anyconfig	Usage:	import	anyconfig	conf1	=	anyconfig.load("/path/to/foo/conf.d/a.yml")	Debugging	Raising	Exceptions	Exceptions	are	raised	with	a	raise	statement.	self.val	=	val	...	For	example,	the	character	class
[aeiouAEIOU]	will	match	any	vowel,	both	lowercase	and	uppercase.	def	box_print(symbol,	width,	height):	if	len(symbol)	!=	1:	raise	Exception('Symbol	must	be	a	single	character	string.')	if	width	>	class	Number:	...	[^abc]	any	character	that	isn’t	between	the	brackets.	Sparse	is	better	than	dense.	It	is	not	optional:	>>>	bat_regex	=
re.compile(r'Bat(wo)+man')	>>>	mo1	=	bat_regex.search('The	Adventures	of	Batwoman')	>>>	mo1.group()	'Batwoman'	>>>	mo2	=	bat_regex.search('The	Adventures	of	Batwowowowoman')	>>>	mo2.group()	'Batwowowowoman'	>>>	mo3	=	bat_regex.search('The	Adventures	of	Batman')	>>>	mo3	is	None	True	Matching	Specific	Repetitions	with
Curly	Brackets	If	you	have	a	group	that	you	want	to	repeat	a	specific	number	of	times,	follow	the	group	in	your	regex	with	a	number	in	curly	brackets.	example_zip.extractall()	The	extract()	method	for	ZipFile	objects	will	extract	a	single	file	from	the	ZIP	file.	However,	If	you	don't	want	specify	the	datatype	then,	use	typing.Any.	Factorial	7	is	1	×	2	×	3
×	4	×	5	×	6	×	7,	or	5,040.	In	other	words,	it	offers	one-line	code	to	evaluate	the	first	expression	if	the	condition	is	true,	otherwise	it	evaluates	the	second	expression.	Complex	is	better	than	complicated.	>>>	def	spam(divideBy):	>>>	try:	>>>	return	42	/	divideBy	>>>	except	ZeroDivisionError	as	e:	>>>	print('Error:	Invalid	argument:	{}'.format(e))
>>>	finally:	>>>	print("--	division	finished	--")	>>>	print(spam(2))	--	division	finished	--	21.0	>>>	print(spam(12))	--	division	finished	--	3.5	>>>	print(spam(0))	Error:	Invalid	Argument	division	by	zero	--	division	finished	--	None	>>>	print(spam(1))	--	division	finished	--	42.0	Lists	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam	['cat',	'bat',	'rat',
'elephant']	Getting	Individual	Values	in	a	List	with	Indexes	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam[0]	'cat'	>>>	spam[1]	'bat'	>>>	spam[2]	'rat'	>>>	spam[3]	'elephant'	Negative	Indexes	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam[-1]	'elephant'	>>>	spam[-3]	'bat'	>>>	'The	{}	is	afraid	of	the	{}.'.format(spam[-1],	spam[-3])	'The
elephant	is	afraid	of	the	bat.'	Getting	Sublists	with	Slices	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam[0:4]	['cat',	'bat',	'rat',	'elephant']	>>>	spam[1:3]	['bat',	'rat']	>>>	spam[0:-1]	['cat',	'bat',	'rat']	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam[:2]	['cat',	'bat']	>>>	spam[1:]	['bat',	'rat',	'elephant']	Slicing	the	complete	list	will	perform	a
copy:	>>>	spam2	=	spam[:]	['cat',	'bat',	'rat',	'elephant']	>>>	spam.append('dog')	>>>	spam	['cat',	'bat',	'rat',	'elephant',	'dog']	>>>	spam2	['cat',	'bat',	'rat',	'elephant']	Getting	a	List’s	Length	with	len()	>>>	spam	=	['cat',	'dog',	'moose']	>>>	len(spam)	3	Changing	Values	in	a	List	with	Indexes	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam[1]
=	'aardvark'	>>>	spam	['cat',	'aardvark',	'rat',	'elephant']	>>>	spam[2]	=	spam[1]	>>>	spam	['cat',	'aardvark',	'aardvark',	'elephant']	>>>	spam[-1]	=	12345	>>>	spam	['cat',	'aardvark',	'aardvark',	12345]	List	Concatenation	and	List	Replication	>>>	[1,	2,	3]	+	['A',	'B',	'C']	[1,	2,	3,	'A',	'B',	'C']	>>>	['X',	'Y',	'Z']	*	3	['X',	'Y',	'Z',	'X',	'Y',	'Z',	'X',	'Y',	'Z']
>>>	spam	=	[1,	2,	3]	>>>	spam	=	spam	+	['A',	'B',	'C']	>>>	spam	[1,	2,	3,	'A',	'B',	'C']	Removing	Values	from	Lists	with	del	Statements	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	del	spam[2]	>>>	spam	['cat',	'bat',	'elephant']	>>>	del	spam[2]	>>>	spam	['cat',	'bat']	Using	for	Loops	with	Lists	>>>	supplies	=	['pens',	'staplers',	'flame-throwers',
'binders']	>>>	for	i,	supply	in	enumerate(supplies):	>>>	print('Index	{}	in	supplies	is:	{}'.format(str(i),	supply))	Index	0	in	supplies	is:	pens	Index	1	in	supplies	is:	staplers	Index	2	in	supplies	is:	flame-throwers	Index	3	in	supplies	is:	binders	Looping	Through	Multiple	Lists	with	zip()	>>>	name	=	['Pete',	'John',	'Elizabeth']	>>>	age	=	[6,	23,	44]	>>>
for	n,	a	in	zip(name,	age):	>>>	print('{}	is	{}	years	old'.format(n,	a))	Pete	is	6	years	old	John	is	23	years	old	Elizabeth	is	44	years	old	The	in	and	not	in	Operators	>>>	'howdy'	in	['hello',	'hi',	'howdy',	'heyas']	True	>>>	spam	=	['hello',	'hi',	'howdy',	'heyas']	>>>	'cat'	in	spam	False	>>>	'howdy'	not	in	spam	False	>>>	'cat'	not	in	spam	True	The
Multiple	Assignment	Trick	The	multiple	assignment	trick	is	a	shortcut	that	lets	you	assign	multiple	variables	with	the	values	in	a	list	in	one	line	of	code.	>>>	spam	=	{'color':	'red',	'age':	42}	>>>	>>>	for	k,	v	in	spam.items():	>>>	print('Key:	{}	Value:	{}'.format(k,	str(v)))	Key:	age	Value:	42	Key:	color	Value:	red	Checking	Whether	a	Key	or	Value
Exists	in	a	Dictionary	>>>	spam	=	{'name':	'Zophie',	'age':	7}	>>>	'name'	in	spam.keys()	True	>>>	'Zophie'	in	spam.values()	True	>>>	#	You	can	omit	the	call	to	keys()	when	checking	for	a	key	>>>	'color'	in	spam	False	>>>	'color'	not	in	spam	True	The	get()	Method	Get	has	two	parameters:	key	and	default	value	if	the	key	did	not	exist	>>>
picnic_items	=	{'apples':	5,	'cups':	2}	>>>	'I	am	bringing	{}	cups.'.format(str(picnic_items.get('cups',	0)))	'I	am	bringing	2	cups.'	>>>	'I	am	bringing	{}	eggs.'.format(str(picnic_items.get('eggs',	0)))	'I	am	bringing	0	eggs.'	The	setdefault()	Method	Let's	consider	this	code:	spam	=	{'name':	'Pooka',	'age':	5}	if	'color'	not	in	spam:	spam['color']	=	'black'
Using	setdefault	we	could	write	the	same	code	more	succinctly:	>>>	spam	=	{'name':	'Pooka',	'age':	5}	>>>	spam.setdefault('color',	'black')	'black'	>>>	spam	{'color':	'black',	'age':	5,	'name':	'Pooka'}	>>>	spam.setdefault('color',	'white')	'black'	>>>	spam	{'color':	'black',	'age':	5,	'name':	'Pooka'}	Pretty	Printing	>>>	import	pprint	>>>	>>>
message	=	'It	was	a	bright	cold	day	in	April,	and	the	clocks	were	striking	>>>	thirteen.'	>>>	count	=	{}	>>>	>>>	for	character	in	message:	>>>	count.setdefault(character,	0)	>>>	count[character]	=	count[character]	+	1	>>>	>>>	pprint.pprint(count)	{'	':	13,	',':	1,	'.':	1,	'A':	1,	'I':	1,	'a':	4,	'b':	1,	'c':	3,	'd':	3,	'e':	5,	'g':	2,	'h':	3,	'i':	6,	'k':	2,	'l':	3,	'n':
4,	'o':	2,	'p':	1,	'r':	5,	's':	3,	't':	6,	'w':	2,	'y':	1}	Merge	two	dictionaries	#	in	Python	3.5+:	>>>	x	=	{'a':	1,	'b':	2}	>>>	y	=	{'b':	3,	'c':	4}	>>>	z	=	{**x,	**y}	>>>	z	{'c':	4,	'a':	1,	'b':	3}	#	in	Python	2.7	>>>	z	=	dict(x,	**y)	>>>	z	{'c':	4,	'a':	1,	'b':	3}	sets	From	the	Python	3	documentation	A	set	is	an	unordered	collection	with	no	duplicate	elements.	A
module	can	discover	whether	or	not	it	is	running	in	the	main	scope	by	checking	its	own	__name__,	which	allows	a	common	idiom	for	conditionally	executing	code	in	a	module	when	it	is	run	as	a	script	or	with	python	-m	but	not	when	it	is	imported:	>>>	if	__name__	==	"__main__":	...	It	represents	a	specific	kind	of	entity.	.	Used	to	indicate	a	fatal	error
that	has	caused	or	is	about	to	cause	the	program	to	stop	running	entirely.	pipenv	Pipenv	is	a	tool	that	aims	to	bring	the	best	of	all	packaging	worlds	(bundler,	composer,	npm,	cargo,	yarn,	etc.)	to	the	Python	world.	print(list(shelf_file.values()))	['cats']	[['Zophie',	'Pooka',	'Simon']]	Saving	Variables	with	the	pprint.pformat()	Function	>>>	import	pprint
>>>	cats	=	[{'name':	'Zophie',	'desc':	'chubby'},	{'name':	'Pooka',	'desc':	'fluffy'}]	>>>	pprint.pformat(cats)	"[{'desc':	'chubby',	'name':	'Zophie'},	{'desc':	'fluffy',	'name':	'Pooka'}]"	>>>	with	open('myCats.py',	'w')	as	file_obj:	...	Where	packages,	notebooks,	projects	and	environments	are	shared.	That	is,	there	can	be	a	local	variable	named	spam	and	a
global	variable	also	named	spam.	>>>	str(-3.14)	'-3.14'	Float	to	Integer:	>>>	int(7.7)	7	>>>	int(7.7)	+	1	8	Flow	Control	Comparison	Operators	Operator	Meaning	==	Equal	to	!=	Not	equal	to	<	Less	than	>	Greater	Than	=	Greater	than	or	Equal	to	These	operators	evaluate	to	True	or	False	depending	on	the	values	you	give	them.	The	setup.py	file	is
at	the	heart	of	a	Python	project.	print(line,	end='')	When,	in	disgrace	with	fortune	and	men's	eyes,	I	all	alone	beweep	my	outcast	state,	And	trouble	deaf	heaven	with	my	bootless	cries,	And	look	upon	myself	and	curse	my	fate,	Writing	to	Files	>>>	with	open('bacon.txt',	'w')	as	bacon_file:	...	>>>	import	shutil,	os	>>>	os.chdir('C:\\')	>>>
shutil.copy('C:\\spam.txt',	'C:\\delicious')	'C:\\delicious\\spam.txt'	>>>	shutil.copy('eggs.txt',	'C:\\delicious\\eggs2.txt')	'C:\\delicious\\eggs2.txt'	While	shutil.copy()	will	copy	a	single	file,	shutil.copytree()	will	copy	an	entire	folder	and	every	folder	and	file	contained	in	it:	>>>	import	shutil,	os	>>>	os.chdir('C:\\')	>>>	shutil.copytree('C:\\bacon',
'C:\\bacon_backup')	'C:\\bacon_backup'	Moving	and	Renaming	Files	and	Folders	>>>	import	shutil	>>>	shutil.move('C:\\bacon.txt',	'C:\\eggs')	'C:\\eggs\\bacon.txt'	The	destination	path	can	also	specify	a	filename.	There	are	two	main	libraries	allowing	to	access	to	YAML	files:	Install	them	using	pip	install	in	your	virtual	environment.	if	__name__	==
“main”:	is	used	to	execute	some	code	only	if	the	file	was	run	directly,	and	not	imported.	You	can	use	the	items	from	a	sequence	as	the	positional	arguments	for	a	function	with	the	*	operator.	The	operator	module	will	also	be	used.	main()	For	a	package,	the	same	effect	can	be	achieved	by	including	a	main.py	module,	the	contents	of	which	will	be
executed	when	the	module	is	run	with	-m	For	example	we	are	developing	script	which	is	designed	to	be	used	as	module,	we	should	do:	>>>	#	Python	program	to	execute	function	directly	>>>	def	add(a,	b):	...	>>>	s	=	{1,	2,	3}	>>>	s.remove(3)	>>>	s	{1,	2}	>>>	s.remove(3)	Traceback	(most	recent	call	last):	File	"",	line	1,	in	KeyError:	3	discard()
won't	raise	any	errors.	The	name	field	must	be	unique	if	you	wish	to	publish	your	package	on	the	Python	Package	Index	(PyPI).	Keyword	arguments	with	default	values	make	it	easy	to	add	new	behaviors	to	a	function,	especially	when	the	function	has	existing	callers.	>>>	s	=	{1,	2,	3}	>>>	s.discard(3)	>>>	s	{1,	2}	>>>	s.discard(3)	>>>	set	union()
union()	or	|	will	create	a	new	set	that	contains	all	the	elements	from	the	sets	provided.	This	function	is	useful	if	you	want	the	information	from	an	exception’s	traceback	but	also	want	an	except	statement	to	gracefully	handle	the	exception.	Traceback	(most	recent	call	last):	File	"",	line	2,	in	Exception:	This	is	the	error	message.	>>>	>>>	Sincerely,
>>>	Bob	>>>	''').strip()	This	generates	the	same	string	than	before.	The	step	is	the	amount	that	the	variable	is	increased	by	after	each	iteration.	To	find	the	total	size	of	all	the	files	in	this	directory:	WARNING:	Directories	themselves	also	have	a	size!	So	you	might	want	to	check	for	whether	a	path	is	a	file	or	directory	using	the	methods	in	the
methods	discussed	in	the	above	section!	Using	os.path.getsize()	and	os.listdir()	together	on	Windows:	>>>	import	os	>>>	total_size	=	0	>>>	for	filename	in	os.listdir('C:\\Windows\\System32'):	total_size	=	total_size	+	os.path.getsize(os.path.join('C:\\Windows\\System32',	filename))	>>>	print(total_size)	1117846456	Using	pathlib	on	*nix:	>>>	from
pathlib	import	Path	>>>	total_size	=	0	>>>	for	sub_path	in	Path('/usr/bin').iterdir():	...	Always	use	is.	#	area	code	(\s|-|\.)?	itertools.starmap(function,	iterable)	Example:	>>>	data	=	[(2,	6),	(8,	4),	(7,	3)]	>>>	result	=	itertools.starmap(operator.mul,	data)	>>>	for	each	in	result:	>>>	print(each)	12	32	21	takewhile()	The	opposite	of	dropwhile().	>>>
vowel_regex	=	re.compile(r'[aeiouAEIOU]')	>>>	vowel_regex.findall('Robocop	eats	baby	food.	Dataclasses	Dataclasses	are	python	classes	but	are	suited	for	storing	data	objects.	They	can	mean:	In	a	function	declaration,	*	means	“pack	all	remaining	positional	arguments	into	a	tuple	named	”,	while	**	is	the	same	for	keyword	arguments	(except	it	uses
a	dictionary,	not	a	tuple).	In	a	function	call,	*	means	“unpack	tuple	or	list	named	to	positional	arguments	at	this	position”,	while	**	is	the	same	for	keyword	arguments.	if	else	Example:	>>>	age	=	15	>>>	print('kid'	if	age	<	18	else	'adult')	kid	Ternary	operators	can	be	chained:	>>>	age	=	15	>>>	print('kid'	if	age	<	13	else	'teenager'	if	age	<	18	else
'adult')	teenager	The	code	above	is	equivalent	to:	if	age	<	18:	if	age	<	13:	print('kid')	else:	print('teenager')	else:	print('adult')	args	and	kwargs	The	names	args	and	kwargs	are	arbitrary	-	the	important	thing	are	the	*	and	**	operators.	Iteration	continues	until	the	longest	iterable	is	exhausted.	class	WithoutExplicitTypes:	...	It	can	use	only	letters,
numbers,	and	the	underscore	(_)	character.	You	can	use	the	same	name	for	different	variables	if	they	are	in	different	scopes.	If	you	import	this	script	as	a	module	in	another	script,	the	name	is	set	to	the	name	of	the	script/module.	accumulate()	Makes	an	iterator	that	returns	the	results	of	a	function.	Example:	>>>	spam	=	'Hello'	>>>	spam	'Hello'
>>>	_spam	=	'Hello'	_spam	should	not	be	used	again	in	the	code.	>>>	def	fruit(**kwargs):	>>>	for	key,	value	in	kwargs.items():	>>>	print("{0}:	{1}".format(key,	value))	>>>	fruit(name	=	"apple",	color	=	"red")	name:	apple	color:	red	>>>	def	show(arg1,	arg2,	*args,	kwarg1=None,	kwarg2=None,	**kwargs):	>>>	print(arg1)	>>>	print(arg2)
>>>	print(args)	>>>	print(kwarg1)	>>>	print(kwarg2)	>>>	print(kwargs)	>>>	data1	=	[1,2,3]	>>>	data2	=	[4,5,6]	>>>	data3	=	{'a':7,'b':8,'c':9}	>>>	show(*data1,*data2,	kwarg1="python",kwarg2="cheatsheet",**data3)	1	2	(3,	4,	5,	6)	python	cheatsheet	{'a':	7,	'b':	8,	'c':	9}	>>>	show(*data1,	*data2,	**data3)	1	2	(3,	4,	5,	6)	None	None	{'a':	7,
'b':	8,	'c':	9}	#	If	you	do	not	specify	**	for	kwargs	>>>	show(*data1,	*data2,	*data3)	1	2	(3,	4,	5,	6,	"a",	"b",	"c")	None	None	{}	Things	to	Remember(args)	Functions	can	accept	a	variable	number	of	positional	arguments	by	using	*args	in	the	def	statement.	#	the	following	instructions	are	run	when	the	'yield'	point	of	the	context	...	Ex:	A	number.	Raw
Strings	A	raw	string	completely	ignores	all	escape	characters	and	prints	any	backslash	that	appears	in	the	string.	>>>	for	i	in	range(5,	-1,	-1):	>>>	print(i)	5	4	3	2	1	0	For	else	statement	This	allows	to	specify	a	statement	to	execute	in	case	of	the	full	loop	has	been	executed.	It	holds	attributes	that	define	or	represent	the	entity.	{n,}	n	or	more	of	the
preceding	group.	#	'cm'	will	have	the	value	that	was	yielded	...	>>>	obj	=	Product("Python")	>>>	obj.name	Python	>>>	obj.count	0	>>>	obj.price	0.0	Type	hints	It	is	mandatory	to	define	the	data	type	in	dataclass.	By	using	a	context	manager	you	can	ensure	that	precautions	are	always	taken	to	prevent	damage	or	loss	in	this	way.	These	are	not	real
folders	but	special	names	that	can	be	used	in	a	path.	These	alternatives	also	provide	more	powerful,	flexible	and	extensible	approaches	to	formatting	text.	>>>	s	=	{1,	2,	3}	>>>	s.add(4)	>>>	s	{1,	2,	3,	4}	And	with	update(),	multiple	ones	.	Your	place	for	free	public	conda	package	hosting.	Calling	shutil.rmtree(path)	will	remove	the	folder	at	path,
and	all	files	and	folders	it	contains	will	also	be	deleted.	However,	there	are	only	three	required	fields:	name,	version,	and	packages.	Optional	keyword	arguments	should	always	be	passed	by	keyword	instead	of	by	position.	(or	dot)	character	in	a	regular	expression	is	called	a	wildcard	and	will	match	any	character	except	for	a	newline:	>>>	at_regex	=
re.compile(r'.at')	>>>	at_regex.findall('The	cat	in	the	hat	sat	on	the	flat	mat.')	['cat',	'hat',	'sat',	'lat',	'mat']	Matching	Everything	with	Dot-Star	>>>	name_regex	=	re.compile(r'First	Name:	(.*)	Last	Name:	(.*)')	>>>	mo	=	name_regex.search('First	Name:	Al	Last	Name:	Sweigart')	>>>	mo.group(1)	'Al'	>>>	mo.group(2)	'Sweigart'	The	dot-star	uses
greedy	mode:	It	will	always	try	to	match	as	much	text	as	possible.	Now	is	better	than	never.	By	placing	a	caret	character	(^)	just	after	the	character	class’s	opening	bracket,	you	can	make	a	negative	character	class.	>>>	for	i	in	range(0,	10,	2):	>>>	print(i)	0	2	4	6	8	You	can	even	use	a	negative	number	for	the	step	argument	to	make	the	for	loop
count	down	instead	of	up.	Ternary	Conditional	Operator	Many	programming	languages	have	a	ternary	operator,	which	define	a	conditional	expression.	From	the	official	Python	3.x	documentation:	The	module	standardizes	a	core	set	of	fast,	memory	efficient	tools	that	are	useful	by	themselves	or	in	combination.	>>>	shutil.move('C:\\bacon.txt',
'C:\\eggs')	'C:\\eggs'	Permanently	Deleting	Files	and	Folders	Calling	os.unlink(path)	or	Path.unlink()	will	delete	the	file	at	path.	Variable	name	starting	with	an	underscore	(_)	are	considered	as	"unuseful`.	Although	that	way	may	not	be	obvious	at	first	unless	you're	Dutch.	The	r'^Hello'	regular	expression	string	matches	strings	that	begin	with	'Hello':
>>>	begins_with_hello	=	re.compile(r'^Hello')	>>>	begins_with_hello.search('Hello	world!')	>>>	begins_with_hello.search('He	said	hello.')	is	None	True	The	r'\d\$'	regular	expression	string	matches	strings	that	end	with	a	numeric	character	from	0	to	9:	>>>	whole_string_is_num	=	re.compile(r'^\d+$')	>>>
whole_string_is_num.search('1234567890')	>>>	whole_string_is_num.search('12345xyz67890')	is	None	True	>>>	whole_string_is_num.search('12	34567890')	is	None	True	The	Wildcard	Character	The	.	itertools.compress(data,	selectors)	Example:	>>>	shapes	=	['circle',	'triangle',	'square',	'pentagon']	>>>	selections	=	[True,	False,	True,	False]
>>>	result	=	itertools.compress(shapes,	selections)	>>>	for	each	in	result:	>>>	print(each)	circle	square	dropwhile()	Make	an	iterator	that	drops	elements	from	the	iterable	as	long	as	the	predicate	is	true;	afterwards,	returns	every	element.	Use	the	is	or	is	not	operators,	or	use	implicit	boolean	evaluation.	itertools.takewhile(predicate,	iterable)
Example:	>>>	data	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	1]	>>>	result	=	itertools.takewhile(lambda	x:	x>>	for	each	in	result:	>>>	print(each)	1	2	3	4	tee()	Return	n	independent	iterators	from	a	single	iterable.	>>>	with	shelve.open('mydata')	as	shelf_file:	...	zero	or	one	of	the	preceding	group.	Deactivate	To	move	onto	something	else	in	the	command	line
type	‘deactivate’	to	deactivate	your	environment.	In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.	Otherwise,	if	the	variable	is	used	in	an	assignment	statement	in	the	function,	it	is	a	local	variable.	I\'m	afraid	I	can\'t	do	that.'	>>>	assert	pod_bay_door_status	==	'open',	'The	pod	bay	doors	need	to	be	"open".'	Traceback	(most	recent	call	last):
File	"",	line	1,	in	assert	pod_bay_door_status	==	'open',	'The	pod	bay	doors	need	to	be	"open".'	AssertionError:	The	pod	bay	doors	need	to	be	"open".	>>>	a	=	[1,	2,	3]	>>>	if	a:	>>>	print("the	list	is	not	empty!")	The	str(),	int(),	and	float()	Functions	Integer	to	String	or	Float:	>>>	str(29)	'29'	>>>	print('I	am	{}	years	old.'.format(str(29)))	I	am	29
years	old.	JSON,	YAML	and	configuration	files	JSON	Open	a	JSON	file	with:	import	json	with	open("filename.json",	"r")	as	f:	content	=	json.loads(f.read())	Write	a	JSON	file	with:	import	json	content	=	{"name":	"Joe",	"age":	20}	with	open("filename.json",	"w")	as	f:	f.write(json.dumps(content,	indent=2))	YAML	Compared	to	JSON,	YAML	allows	for	much
better	human	maintainability	and	gives	you	the	option	to	add	comments.	But	can	also	obtain	it	as	a	string	by	calling	traceback.format_exc().	performs	a	nongreedy	match	of	the	preceding	p.	Since	these	methods	return	list-like	values	instead	of	true	lists,	you	should	pass	them	to	the	list()	function	to	get	them	in	list	form.	Set	objects	also	support
mathematical	operations	like	union,	intersection,	difference,	and	symmetric	difference.	Level	Logging	Function	Description	DEBUG	logging.debug()	The	lowest	level.	However,	a	local	scope	can	access	global	variables.	name='pythonCheatsheet',	...	>>>	import	zipfile,	os	>>>	os.chdir('C:\\')	#	move	to	the	folder	with	example.zip	>>>	with
zipfile.ZipFile('example.zip')	as	example_zip:	...	Joining	paths	can	be	a	headache	if	your	code	needs	to	work	on	different	platforms.	packages=['pipenv',],	...	The	traceback	text	was	written	to	errorInfo.txt.	Disabling	Assertions	Assertions	can	be	disabled	by	passing	the	-O	option	when	running	Python.	itertools.tee(iterable,	n=2)	Example:	>>>	colors	=
['red',	'orange',	'yellow',	'green',	'blue']	>>>	alpha_colors,	beta_colors	=	itertools.tee(colors)	>>>	for	each	in	alpha_colors:	>>>	print(each)	red	orange	yellow	green	blue	>>>	colors	=	['red',	'orange',	'yellow',	'green',	'blue']	>>>	alpha_colors,	beta_colors	=	itertools.tee(colors)	>>>	for	each	in	beta_colors:	>>>	print(each)	red	orange	yellow	green
blue	zip_longest()	Makes	an	iterator	that	aggregates	elements	from	each	of	the	iterables.	You	use	*args	when	you	have	an	indefinite	amount	of	positional	arguments.	print(spam_info.file_size)	...	When	called	on	a	regex	that	has	groups,	such	as	(\d\d\d)-(d\d)-(\d\d\d\d),	the	method	findall()	returns	a	list	of	es	of	strings	(one	string	for	each	group),	such	as
[('415',	'555',	'9999'),	('212',	'555',	'0000')].	A	negative	character	class	will	match	all	the	characters	that	are	not	in	the	character	class.	new_zip.write('spam.txt',	compress_type=zipfile.ZIP_DEFLATED)	This	code	will	create	a	new	ZIP	file	named	new.zip	that	has	the	compressed	contents	of	spam.txt.	hello_content	=	hello_file.read()	>>>	hello_content
'Hello	World!'	>>>	#	Alternatively,	you	can	use	the	*readlines()*	method	to	get	a	list	of	string	values	from	the	file,	one	string	for	each	line	of	text:	>>>	with	open('sonnet29.txt')	as	sonnet_file:	...	>>>	from	textwrap	import	dedent	>>>	>>>	def	my_function():	>>>	print('''	>>>	Dear	Alice,	>>>	>>>	Eve's	cat	has	been	arrested	for	catnapping,	cat
burglary,	and	extortion.	This	module	is	not	necessary	when	using	itertools,	but	needed	for	some	of	the	examples	below.	Install	pipenv	pip	install	pipenv	Enter	your	Project	directory	and	install	the	Packages	for	your	project	cd	my_project	pipenv	install	Pipenv	will	install	your	package	and	create	a	Pipfile	for	you	in	your	project’s	directory.	Together,	they
form	an	“iterator	algebra”	making	it	possible	to	construct	specialized	tools	succinctly	and	efficiently	in	pure	Python.	val:	int	...	For	example,	enter	the	following	into	the	interactive	shell:	>>>	consonant_regex	=	re.compile(r'[^aeiouAEIOU]')	>>>	consonant_regex.findall('Robocop	eats	baby	food.	print(shelf_file['cats'])	['Zophie',	'Pooka',	'Simon']	Just
like	dictionaries,	shelf	values	have	keys()	and	values()	methods	that	will	return	list-like	values	of	the	keys	and	values	in	the	shelf.	>>>	from	string	import	Template	>>>	name	=	'Elizabeth'	>>>	t	=	Template('Hey	$name!')	>>>	t.substitute(name=name)	'Hey	Elizabeth!'	Regular	Expressions	Import	the	regex	module	with	import	re.	Relative	Paths
There	are	two	ways	to	specify	a	file	path.	Messages	can	be	logged	at	each	level	using	a	different	logging	function.	yield	num	+	1	...	print(spam_info.compress_size)	...	Initializing	a	set	There	are	two	ways	to	create	sets:	using	curly	braces	{}	and	the	built-in	function	set()	>>>	s	=	{1,	2,	3}	>>>	s	=	set([1,	2,	3])	When	creating	an	empty	set,	be	sure	to
not	use	the	curly	braces	{}	or	you	will	get	an	empty	dictionary	instead.	In	the	following	example,	the	source	file	is	moved	and	renamed:	>>>	shutil.move('C:\\bacon.txt',	'C:\\eggs\ew_bacon.txt')	'C:\\eggs\ew_bacon.txt'	If	there	is	no	eggs	folder,	then	move()	will	rename	bacon.txt	to	a	file	named	eggs.	Making	Your	Own	Character	Classes	There	are
times	when	you	want	to	match	a	set	of	characters	but	the	shorthand	character	classes	(\d,	\w,	\s,	and	so	on)	are	too	broad.	The	startswith()	and	endswith()	String	Methods	>>>	'Hello	world!'.startswith('Hello')	True	>>>	'Hello	world!'.endswith('world!')	True	>>>	'abc123'.startswith('abcdef')	False	>>>	'abc123'.endswith('12')	False	>>>	'Hello
world!'.startswith('Hello	world!')	True	>>>	'Hello	world!'.endswith('Hello	world!')	True	The	join()	and	split()	String	Methods	join():	>>>	',	'.join(['cats',	'rats',	'bats'])	'cats,	rats,	bats'	>>>	'	'.join(['My',	'name',	'is',	'Simon'])	'My	name	is	Simon'	>>>	'ABC'.join(['My',	'name',	'is',	'Simon'])	'MyABCnameABCisABCSimon'	split():	>>>	'My	name	is
Simon'.split()	['My',	'name',	'is',	'Simon']	>>>	'MyABCnameABCisABCSimon'.split('ABC')	['My',	'name',	'is',	'Simon']	>>>	'My	name	is	Simon'.split('m')	['My	na',	'e	is	Si',	'on']	Justifying	Text	with	rjust(),	ljust(),	and	center()	rjust()	and	ljust():	>>>	'Hello'.rjust(10)	'	Hello'	>>>	'Hello'.rjust(20)	'	Hello'	>>>	'Hello	World'.rjust(20)	'	Hello	World'	>>>
'Hello'.ljust(10)	'Hello	'	An	optional	second	argument	to	rjust()	and	ljust()	will	specify	a	fill	character	other	than	a	space	character.	>>>	from	dataclasses	import	dataclass	>>>	from	typing	import	Any	>>>	@dataclass	...	chain()	Take	a	series	of	iterables	and	return	them	as	one	long	iterable.	Sorting	the	Values	in	a	List	with	the	sort()	Method	>>>
spam	=	[2,	5,	3.14,	1,	-7]	>>>	spam.sort()	>>>	spam	[-7,	1,	2,	3.14,	5]	>>>	spam	=	['ants',	'cats',	'dogs',	'badgers',	'elephants']	>>>	spam.sort()	>>>	spam	['ants',	'badgers',	'cats',	'dogs',	'elephants']	You	can	also	pass	True	for	the	reverse	keyword	argument	to	have	sort()	sort	the	values	in	reverse	order:	>>>	spam.sort(reverse=True)	>>>	spam
['elephants',	'dogs',	'cats',	'badgers',	'ants']	If	you	need	to	sort	the	values	in	regular	alphabetical	order,	pass	str.	Basic	uses	include	membership	testing	and	eliminating	duplicate	entries.	Python	files	can	act	as	either	reusable	modules,	or	as	standalone	programs.	def	context_manager(num):	...	>>>	bat_regex	=	re.compile(r'Bat(wo)*man')	>>>	mo1	=
bat_regex.search('The	Adventures	of	Batman')	>>>	mo1.group()	'Batman'	>>>	mo2	=	bat_regex.search('The	Adventures	of	Batwoman')	>>>	mo2.group()	'Batwoman'	>>>	mo3	=	bat_regex.search('The	Adventures	of	Batwowowowoman')	>>>	mo3.group()	'Batwowowowoman'	Matching	One	or	More	with	the	Plus	While	*	means	“match	zero	or
more,”	the	+	(or	plus)	means	“match	one	or	more”.	>>>	phone_num_regex	=	re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')	#	has	no	groups	>>>	phone_num_regex.findall('Cell:	415-555-9999	Work:	212-555-0000')	['415-555-9999',	'212-555-0000']	To	summarize	what	the	findall()	method	returns,	remember	the	following:	When	called	on	a	regex	with	no	groups,
such	as	\d-\d\d\d-\d\d\d\d,	the	method	findall()	returns	a	list	of	ng	matches,	such	as	['415-555-9999',	'212-555-0000'].	price:	float	=	0.0	...	This	will	create	all	the	unique	combination	that	have	r	members.	In	plain	English,	an	assert	statement	says,	“I	assert	that	this	condition	holds	true,	and	if	not,	there	is	a	bug	somewhere	in	the	program.”	Unlike
exceptions,	your	code	should	not	handle	assert	statements	with	try	and	except;	if	an	assert	fails,	your	program	should	crash.	spam$	means	the	string	must	end	with	spam.	Uninstall	Packages	pipenv	uninstall	Activate	the	Virtual	Environment	associated	with	your	Python	project	pipenv	shell	Exit	the	Virtual	Environment	exit	Find	more	information	and	a
video	in	docs.pipenv.org.	If	the	sanity	check	fails,	then	an	AssertionError	exception	is	raised.	Fortunately,	Python	provides	easy	ways	to	handle	this.	Things	to	Remember(kwargs)	Function	arguments	can	be	specified	by	position	or	by	keyword.	Adding	new	positional	parameters	to	functions	that	accept	*args	can	introduce	hard-to-find	bugs.
print('Enter')	...	INFO	logging.info()	Used	to	record	information	on	general	events	in	your	program	or	confirm	that	things	are	working	at	their	point	in	the	program.	>>>	s	=	{1,	2,	3,	2,	3,	4}	>>>	s	{1,	2,	3,	4}	And	as	an	unordered	data	type,	they	can't	be	indexed.	When	a	context	ends,	the	file	object	is	closed	automatically:	>>>	with	open(filename)
as	f:	>>>	file_contents	=	f.read()	#	the	open_file	object	has	automatically	been	closed.	A	single	period	(“dot”)	for	a	folder	name	is	shorthand	for	“this	directory.”	Two	periods	(“dot-dot”)	means	“the	parent	folder.”	Handling	Absolute	and	Relative	Paths	To	see	if	a	path	is	an	absolute	path:	Using	os.path	on	*nix:	>>>	import	os	>>>	os.path.isabs('/')
True	>>>	os.path.isabs('..')	False	Using	pathlib	on	*nix:	>>>	from	pathlib	import	Path	>>>	Path('/').is_absolute()	True	>>>	Path('..').is_absolute()	False	You	can	extract	an	absolute	path	with	both	os.path	and	pathlib	Using	os.path	on	*nix:	>>>	import	os	>>>	os.getcwd()	'/home/asweigart'	>>>	os.path.abspath('..')	'/home'	Using	pathlib	on	*nix:	from
pathlib	import	Path	print(Path.cwd())	/home/asweigart	print(Path('..').resolve())	/home	You	can	get	a	relative	path	from	a	starting	path	to	another	path.	long_description=open('README.txt').read(),	...	>>>	import	calculate	>>>	calculate.add(3,	5)	8	Advantages	Every	Python	module	has	it’s	__name__	defined	and	if	this	is	__main__,	it	implies	that	the
module	is	being	run	standalone	by	the	user	and	we	can	do	corresponding	appropriate	actions.	>>>	ha_regex	=	re.compile(r'(Ha){3}')	>>>	mo1	=	ha_regex.search('HaHaHa')	>>>	mo1.group()	'HaHaHa'	>>>	mo2	=	ha_regex.search('Ha')	>>>	mo2	is	None	True	Greedy	and	Nongreedy	Matching	Python’s	regular	expressions	are	greedy	by	default,
which	means	that	in	ambiguous	situations	they	will	match	the	longest	string	possible.	>>>	import	send2trash	>>>	with	open('bacon.txt',	'a')	as	bacon_file:	#	creates	the	file	...	Context	Manager	While	Python's	context	managers	are	widely	used,	few	understand	the	purpose	behind	their	use.	>>>	s	=	{1,	2,	3}	>>>	s.update([2,	3,	4,	5,	6])	>>>	s	{1,	2,
3,	4,	5,	6}	#	remember,	sets	automatically	remove	duplicates	set	remove()	and	discard()	Both	methods	will	remove	an	element	from	the	set,	but	remove()	will	raise	a	key	error	if	the	value	doesn't	exist.	setup.py	The	setup	script	is	the	centre	of	all	activity	in	building,	distributing,	and	installing	modules	using	the	Distutils.	Open	a	new	file	editor	window
and	enter	the	following	code.	The	non-greedy	version	of	the	curly	brackets,	which	matches	the	shortest	string	possible,	has	the	closing	curly	bracket	followed	by	a	question	mark.	Opening	and	reading	files	with	the	open()	function	>>>	with	open('C:\\Users\\your_home_folder\\hello.txt')	as	hello_file:	...	itertools.islice(iterable,	start,	stop[,	step])
Example:	>>>	colors	=	['red',	'orange',	'yellow',	'green',	'blue',]	>>>	few_colors	=	itertools.islice(colors,	2)	>>>	for	each	in	few_colors:	>>>	print(each)	red	orange	permutations()	itertools.permutations(iterable,	r=None)	Example:	>>>	alpha_data	=	['a',	'b',	'c']	>>>	result	=	itertools.permutations(alpha_data)	>>>	for	each	in	result:	>>>
print(each)	('a',	'b',	'c')	('a',	'c',	'b')	('b',	'a',	'c')	('b',	'c',	'a')	('c',	'a',	'b')	('c',	'b',	'a')	product()	Creates	the	cartesian	products	from	a	series	of	iterables.	Disabling	Logging	After	you’ve	debugged	your	program,	you	probably	don’t	want	all	these	log	messages	cluttering	the	screen.	Often	it’s	the	code	that	calls	the	function,	not	the	function	itself,	that	knows
how	to	handle	an	exception.	In	mathematics,	factorial	4	is	1	×	2	×	3	×	4,	or	24.	The	itertools	module	comes	in	the	standard	library	and	must	be	imported.	/usr/bin/tiff2rgba	/usr/bin/iconv	/usr/bin/ldd	/usr/bin/cache_restore	/usr/bin/udiskie	/usr/bin/unix2dos	/usr/bin/t1reencode	/usr/bin/epstopdf	/usr/bin/idle3	...	The	value	or	expression	that	the	function
should	return.	The	116	is	the	return	value	from	the	write()	method,	since	116	characters	were	written	to	the	file.	We	will	showcase	how	to	deal	with	this	with	both	os.path.join	and	pathlib.Path.joinpath	Using	os.path.join	on	Windows:	>>>	import	os	>>>	os.path.join('usr',	'bin',	'spam')	'usr\\bin\\spam'	And	using	pathlib	on	*nix:	>>>	from	pathlib
import	Path	>>>	print(Path('usr').joinpath('bin').joinpath('spam'))	usr/bin/spam	pathlib	also	provides	a	shortcut	to	joinpath	using	the	/	operator:	>>>	from	pathlib	import	Path	>>>	print(Path('usr')	/	'bin'	/	'spam')	usr/bin/spam	Notice	the	path	separator	is	different	between	Windows	and	Unix	based	operating	system,	that's	why	you	want	to	use	one	of
the	above	methods	instead	of	adding	strings	together	to	join	paths	together.	>>>	num_data	=	[1,	2,	3]	>>>	alpha_data	=	['a',	'b',	'c']	>>>	result	=	itertools.product(num_data,	alpha_data)	>>>	for	each	in	result:	print(each)	(1,	'a')	(1,	'b')	(1,	'c')	(2,	'a')	(2,	'b')	(2,	'c')	(3,	'a')	(3,	'b')	(3,	'c')	repeat()	This	function	will	repeat	an	object	over	and	over	again.
To	match	any	and	all	text	in	a	nongreedy	fashion,	use	the	dot,	star,	and	question	mark	(.*?).	(It	is	a	fish.)')	password	=	input()	if	password	==	'swordfish':	break	print('Access	granted.')	for	Loops	and	the	range()	Function	>>>	print('My	name	is')	>>>	for	i	in	range(5):	>>>	print('Jimmy	Five	Times	({})'.format(str(i)))	My	name	is	Jimmy	Five	Times	(0)
Jimmy	Five	Times	(1)	Jimmy	Five	Times	(2)	Jimmy	Five	Times	(3)	Jimmy	Five	Times	(4)	The	range()	function	can	also	be	called	with	three	arguments.	For	example	you	can	make	a	function	that	you	can	use	to	call	any	other	function,	no	matter	what	parameters	it	has:	def	forward(f,	*args,	**kwargs):	return	f(*args,	**kwargs)	Inside	forward,	args	is	a
tuple	(of	all	positional	arguments	except	the	first	one,	because	we	specified	it	-	the	f),	kwargs	is	a	dict.	sonnet_file.readlines()	[When,	in	disgrace	with	fortune	and	men's	eyes,',	'	I	all	alone	beweep	my	outcast	state,',	And	trouble	deaf	heaven	with	my	bootless	cries,',	And	look	upon	myself	and	curse	my	fate,']	>>>	#	You	can	also	iterate	through	the	file
line	by	line:	>>>	with	open('sonnet29.txt')	as	sonnet_file:	...	This	folder	must	be	empty	of	any	files	or	folders.	The	and	Operator’s	Truth	Table:	Expression	Evaluates	to	True	and	True	True	True	and	False	False	False	and	True	False	False	and	False	False	The	or	Operator’s	Truth	Table:	Expression	Evaluates	to	True	or	True	True	True	or	False	True	False
or	True	True	False	or	False	False	The	not	Operator’s	Truth	Table:	Expression	Evaluates	to	not	True	False	not	False	True	Mixing	Boolean	and	Comparison	Operators	>>>	(4	<	5)	and	(5	<	6)	True	>>>	(4	<	5)	and	(9	<	6)	False	>>>	(1	==	2)	or	(2	==	2)	True	You	can	also	use	multiple	Boolean	operators	in	an	expression,	along	with	the	comparison
operators:	>>>	2	+	2	==	4	and	not	2	+	2	==	5	and	2	*	2	==	2	+	2	True	if	Statements	if	name	==	'Alice':	print('Hi,	Alice.')	else	Statements	name	=	'Bob'	if	name	==	'Alice':	print('Hi,	Alice.')	else:	print('Hello,	stranger.')	elif	Statements	name	=	'Bob'	age	=	5	if	name	==	'Alice':	print('Hi,	Alice.')	elif	age	<	12:	print('You	are	not	Alice,	kiddo.')	name	=
'Bob'	age	=	30	if	name	==	'Alice':	print('Hi,	Alice.')	elif	age	<	12:	print('You	are	not	Alice,	kiddo.')	else:	print('You	are	neither	Alice	nor	a	little	kid.')	while	Loop	Statements	spam	=	0	while	spam	<	5:	print('Hello,	world.')	spam	=	spam	+	1	break	Statements	If	the	execution	reaches	a	break	statement,	it	immediately	exits	the	while	loop’s	clause:	while
True:	print('Please	type	your	name.')	name	=	input()	if	name	==	'your	name':	break	print('Thank	you!')	continue	Statements	When	the	program	execution	reaches	a	continue	statement,	the	program	execution	immediately	jumps	back	to	the	start	of	the	loop.	And	available	to	the	projects	we	connect	to	this	environment.	itertools.groupby(iterable,
key=None)	Example:	>>>	robots	=	[{	'name':	'blaster',	'faction':	'autobot'	},	{	'name':	'galvatron',	'faction':	'decepticon'	},	{	'name':	'jazz',	'faction':	'autobot'	},	{	'name':	'metroplex',	'faction':	'autobot'	},	{	'name':	'megatron',	'faction':	'decepticon'	},	{	'name':	'starcream',	'faction':	'decepticon'	}]	>>>	for	key,	group	in	itertools.groupby(robots,
key=lambda	x:	x['faction']):	>>>	print(key)	>>>	print(list(group))	autobot	[{'name':	'blaster',	'faction':	'autobot'}]	decepticon	[{'name':	'galvatron',	'faction':	'decepticon'}]	autobot	[{'name':	'jazz',	'faction':	'autobot'},	{'name':	'metroplex',	'faction':	'autobot'}]	decepticon	[{'name':	'megatron',	'faction':	'decepticon'},	{'name':	'starcream',	'faction':
'decepticon'}]	islice()	This	function	is	very	much	like	slices.	Joining	paths	is	helpful	if	you	need	to	create	different	file	paths	under	the	same	directory.	Readability	counts.	Errors	should	never	pass	silently.	>>>	import	logging	>>>	>>>	logging.basicConfig(level=logging.DEBUG,	format='	%(asctime)s	-	%(levelname)s-	%(message)s')	>>>	>>>
logging.debug('Start	of	program')	>>>	>>>	def	factorial(n):	>>>	>>>	logging.debug('Start	of	factorial(%s)'	%	(n))	>>>	total	=	1	>>>	>>>	for	i	in	range(1,	n	+	1):	>>>	total	*=	i	>>>	logging.debug('i	is	'	+	str(i)	+	',	total	is	'	+	str(total))	>>>	>>>	logging.debug('End	of	factorial(%s)'	%	(n))	>>>	>>>	return	total	>>>	>>>	print(factorial(5))
>>>	logging.debug('End	of	program')	2015-05-23	16:20:12,664	-	DEBUG	-	Start	of	program	2015-05-23	16:20:12,664	-	DEBUG	-	Start	of	factorial(5)	2015-05-23	16:20:12,665	-	DEBUG	-	i	is	0,	total	is	0	2015-05-23	16:20:12,668	-	DEBUG	-	i	is	1,	total	is	0	2015-05-23	16:20:12,670	-	DEBUG	-	i	is	2,	total	is	0	2015-05-23	16:20:12,673	-	DEBUG	-	i	is	3,	total
is	0	2015-05-23	16:20:12,675	-	DEBUG	-	i	is	4,	total	is	0	2015-05-23	16:20:12,678	-	DEBUG	-	i	is	5,	total	is	0	2015-05-23	16:20:12,680	-	DEBUG	-	End	of	factorial(5)	0	2015-05-23	16:20:12,684	-	DEBUG	-	End	of	program	Logging	Levels	Logging	levels	provide	a	way	to	categorize	your	log	messages	by	importance.	If	the	implementation	is	hard	to	explain,
it's	a	bad	idea.	return	a+b	...	add(3,	5)	...	>>>	import	logging	>>>	logging.basicConfig(level=logging.INFO,	format='	%(asctime)s	-%(levelname)s	-	%(message)s')	>>>	logging.critical('Critical	error!	Critical	error!')	2015-05-22	11:10:48,054	-	CRITICAL	-	Critical	error!	Critical	error!	>>>	logging.disable(logging.CRITICAL)	>>>
logging.critical('Critical	error!	Critical	error!')	>>>	logging.error('Error!	Error!')	Logging	to	a	File	Instead	of	displaying	the	log	messages	to	the	screen,	you	can	write	them	to	a	text	file.	anaconda	Anaconda	is	another	popular	tool	to	manage	python	packages.	Usually	you	care	about	these	messages	only	when	diagnosing	problems.	The

logging.disable()	function	disables	these	so	that	you	don’t	have	to	go	into	your	program	and	remove	all	the	logging	calls	by	hand.	Likewise,	you	can	put	a	dollar	sign	(\$)	at	the	end	of	the	regex	to	indicate	the	string	must	end	with	this	regex	pattern.	value:	Any	=	42	...	For	example,	the	character	class	[a-zA-Z0-9]	will	match	all	lowercase	letters,
uppercase	letters,	and	numbers.	Using	os.path.join	on	Windows:	>>>	my_files	=	['accounts.txt',	'details.csv',	'invite.docx']	>>>	for	filename	in	my_files:	>>>	print(os.path.join('C:\\Users\\asweigart',	filename))	C:\Users\asweigart\accounts.txt	C:\Users\asweigart\details.csv	C:\Users\asweigart\invite.docx	Using	pathlib	on	*nix:	>>>	my_files	=
['accounts.txt',	'details.csv',	'invite.docx']	>>>	home	=	Path.home()	>>>	for	filename	in	my_files:	>>>	print(home	/	filename)	/home/asweigart/accounts.txt	/home/asweigart/details.csv	/home/asweigart/invite.docx	The	Current	Working	Directory	Using	os	on	Windows:	>>>	import	os	>>>	os.getcwd()	'C:\\Python34'	>>>
os.chdir('C:\\Windows\\System32')	>>>	os.getcwd()	'C:\\Windows\\System32'	Using	pathlib	on	*nix:	>>>	from	pathlib	import	Path	>>>	from	os	import	chdir	>>>	print(Path.cwd())	/home/asweigart	>>>	chdir('/usr/lib/python3.6')	>>>	print(Path.cwd())	/usr/lib/python3.6	Creating	New	Folders	Using	os	on	Windows:	>>>	import	os	>>>
os.makedirs('C:\\delicious\\walnut\\waffles')	Using	pathlib	on	*nix:	>>>	from	pathlib	import	Path	>>>	cwd	=	Path.cwd()	>>>	(cwd	/	'delicious'	/	'walnut'	/	'waffles').mkdir()	Traceback	(most	recent	call	last):	File	"",	line	1,	in	File	"/usr/lib/python3.6/pathlib.py",	line	1226,	in	mkdir	self._accessor.mkdir(self,	mode)	File	"/usr/lib/python3.6/pathlib.py",	line
387,	in	wrapped	return	strfunc(str(pathobj),	*args)	FileNotFoundError:	[Errno	2]	No	such	file	or	directory:	'/home/asweigart/delicious/walnut/waffles'	Oh	no,	we	got	a	nasty	error!	The	reason	is	that	the	'delicious'	directory	does	not	exist,	so	we	cannot	make	the	'walnut'	and	the	'waffles'	directories	under	it.	Assertions	An	assertion	is	a	sanity	check	to
make	sure	your	code	isn’t	doing	something	obviously	wrong.	itertools.dropwhile(predicate,	iterable)	Example:	>>>	data	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	1]	>>>	result	=	itertools.dropwhile(lambda	x:	x>>	for	each	in	result:	>>>	print(each)	5	6	7	8	9	10	1	filterfalse()	Makes	an	iterator	that	filters	elements	from	iterable	returning	only	those	for	which	the
predicate	is	False.	>>>	s	=	{1,	2,	3}	>>>	s[0]	Traceback	(most	recent	call	last):	File	"",	line	1,	in	TypeError:	'set'	object	does	not	support	indexing	>>>	set	add()	and	update()	Using	the	add()	method	we	can	add	a	single	element	to	the	set.	These	sanity	checks	are	performed	by	assert	statements.	Namespaces	are	one	honking	great	idea	--	let's	do
more	of	those!	Python	Basics	Math	Operators	From	Highest	to	Lowest	precedence:	Operators	Operation	Example	**	Exponent	2	**	3	=	8	%	Modulus/Remainder	22	%	8	=	6	//	Integer	division	22	//	8	=	2	/	Division	22	/	8	=	2.75	*	Multiplication	3	*	3	=	9	-	Subtraction	5	-	2	=	3	+	Addition	2	+	2	=	4	Examples	of	expressions	in	the	interactive	shell:	>>>	2
+	3	*	6	20	>>>	(2	+	3)	*	6	30	>>>	2	**	8	256	>>>	23	//	7	3	>>>	23	%	7	2	>>>	(5	-	1)	*	((7	+	1)	/	(3	-	1))	16.0	Data	Types	Data	Type	Examples	Integers	-2,	-1,	0,	1,	2,	3,	4,	5	Floating-point	numbers	-1.25,	-1.0,	--0.5,	0.0,	0.5,	1.0,	1.25	Strings	'a',	'aa',	'aaa',	'Hello!',	'11	cats'	String	Concatenation	and	Replication	String	concatenation:	>>>	'Alice'	'Bob'
'AliceBob'	Note:	Avoid	+	operator	for	string	concatenation.	>>>	s1	=	{1,	2,	3}	>>>	s2	=	{2,	3,	4}	>>>	s1.symmetric_difference(s2)	#	or	's1	^	s2'	{1,	4}	itertools	Module	The	itertools	module	is	a	collection	of	tools	intended	to	be	fast	and	use	memory	efficiently	when	handling	iterators	(like	lists	or	dictionaries).	total_size	+=	sub_path.stat().st_size
>>>	>>>	print(total_size)	1903178911	Copying	Files	and	Folders	The	shutil	module	provides	functions	for	copying	files,	as	well	as	entire	folders.	So	you	will	commonly	see	a	raise	statement	inside	a	function	and	the	try	and	except	statements	in	the	code	calling	the	function.	Simple	is	better	than	complex.	The	most	common	usage	is	to	make	a	terse
simple	conditional	assignment	statement.	#	extension)''',	re.VERBOSE)	Handling	File	and	Directory	Paths	There	are	two	main	modules	in	Python	that	deals	with	path	manipulation.	String	Formatting	(str.format)	Python	3	introduced	a	new	way	to	do	string	formatting	that	was	later	back-ported	to	Python	2.7.	This	makes	the	syntax	for	string	formatting
more	regular.	deactivate	Notice	how	the	parenthesis	disappear.	In	code,	an	assert	statement	consists	of	the	following:	The	assert	keyword	A	condition	(that	is,	an	expression	that	evaluates	to	True	or	False)	A	comma	A	string	to	display	when	the	condition	is	False	>>>	pod_bay_door_status	=	'open'	>>>	assert	pod_bay_door_status	==	'open',	'The	pod
bay	doors	need	to	be	"open".'	>>>	pod_bay_door_status	=	'I\'m	sorry,	Dave.	def	__init__(self,	val):	...	license='MIT',	...	print(type(shelf_file))	...	The	main	purpose	of	the	setup	script	is	to	describe	your	module	distribution	to	the	Distutils,	so	that	the	various	commands	that	operate	on	your	modules	do	the	right	thing.	You	commonly	use	one	with	the	with
statement.	import	random	def	getAnswer(answerNumber):	if	answerNumber	==	1:	return	'It	is	certain'	elif	answerNumber	==	2:	return	'It	is	decidedly	so'	elif	answerNumber	==	3:	return	'Yes'	elif	answerNumber	==	4:	return	'Reply	hazy	try	again'	elif	answerNumber	==	5:	return	'Ask	again	later'	elif	answerNumber	==	6:	return	'Concentrate	and
ask	again'	elif	answerNumber	==	7:	return	'My	reply	is	no'	elif	answerNumber	==	8:	return	'Outlook	not	so	good'	elif	answerNumber	==	9:	return	'Very	doubtful'	r	=	random.randint(1,	9)	fortune	=	getAnswer(r)	print(fortune)	The	None	Value	>>>	spam	=	print('Hello!')	Hello!	>>>	spam	is	None	True	Note:	never	compare	to	None	with	the	==
operator.	It	takes	care	of	the	notifying.)	Find	more	information	visit	.	Python	3.7	provides	a	decorator	dataclass	that	is	used	to	convert	a	class	into	a	dataclass.	It	is	a	convenient	choice	for	configuration	files	where	humans	will	have	to	edit	it.	So	instead	of	doing	this:	>>>	cat	=	['fat',	'orange',	'loud']	>>>	size	=	cat[0]	>>>	color	=	cat[1]	>>>
disposition	=	cat[2]	You	could	type	this	line	of	code:	>>>	cat	=	['fat',	'orange',	'loud']	>>>	size,	color,	disposition	=	cat	The	multiple	assignment	trick	can	also	be	used	to	swap	the	values	in	two	variables:	>>>	a,	b	=	'Alice',	'Bob'	>>>	a,	b	=	b,	a	>>>	print(a)	'Bob'	>>>	print(b)	'Alice'	Augmented	Assignment	Operators	Operator	Equivalent	spam	+=	1
spam	=	spam	+	1	spam	-=	1	spam	=	spam	-	1	spam	*=	1	spam	=	spam	*	1	spam	/=	1	spam	=	spam	/	1	spam	%=	1	spam	=	spam	%	1	Examples:	>>>	spam	=	'Hello'	>>>	spam	+=	'	world!'	>>>	spam	'Hello	world!'	>>>	bacon	=	['Zophie']	>>>	bacon	*=	3	>>>	bacon	['Zophie',	'Zophie',	'Zophie']	Finding	a	Value	in	a	List	with	the	index()	Method	>>>
spam	=	['Zophie',	'Pooka',	'Fat-tail',	'Pooka']	>>>	spam.index('Pooka')	1	Adding	Values	to	Lists	with	the	append()	and	insert()	Methods	append():	>>>	spam	=	['cat',	'dog',	'bat']	>>>	spam.append('moose')	>>>	spam	['cat',	'dog',	'bat',	'moose']	insert():	>>>	spam	=	['cat',	'dog',	'bat']	>>>	spam.insert(1,	'chicken')	>>>	spam	['cat',	'chicken',	'dog',
'bat']	Removing	Values	from	Lists	with	remove()	>>>	spam	=	['cat',	'bat',	'rat',	'elephant']	>>>	spam.remove('bat')	>>>	spam	['cat',	'rat',	'elephant']	If	the	value	appears	multiple	times	in	the	list,	only	the	first	instance	of	the	value	will	be	removed.	NO	(even	if	they	are	valid	Python):	>>>	True	==	True	True	>>>	True	!=	False	True	YES	(even	if	they
are	valid	Python):	>>>	True	is	True	True	>>>	True	is	not	False	True	These	statements	are	equivalent:	>>>	if	a	is	True:	>>>	pass	>>>	if	a	is	not	False:	>>>	pass	>>>	if	a:	>>>	pass	And	these	as	well:	>>>	if	a	is	False:	>>>	pass	>>>	if	a	is	not	True:	>>>	pass	>>>	if	not	a:	>>>	pass	Boolean	Operators	There	are	three	Boolean	operators:	and,	or,
and	not.	If	the	iterables	are	of	uneven	length,	missing	values	are	filled-in	with	fillvalue.	spam_info	=	example_zip.getinfo('spam.txt')	isdecimal()	returns	True	if	the	string	consists	only	of	numeric	characters	and	is	not	blank.	isalnum()	returns	True	if	the	string	consists	only	of	letters	and	numbers	and	is	not	blank.	Used	for	small	details.	An	absolute
path,	which	always	begins	with	the	root	folder	A	relative	path,	which	is	relative	to	the	program’s	current	working	directory	There	are	also	the	dot	(.)	and	dot-dot	(..)	folders.	{,m}	0	to	m	of	the	preceding	group.	If	there	is	a	global	statement	for	that	variable	in	a	function,	it	is	a	global	variable.	ERROR	logging.error()	Used	to	record	an	error	that	caused
the	program	to	fail	to	do	something.	itertools.accumulate(iterable[,	func])	Example:	>>>	data	=	[1,	2,	3,	4,	5]	>>>	result	=	itertools.accumulate(data,	operator.mul)	>>>	for	each	in	result:	>>>	print(each)	1	2	6	24	120	The	operator.mul	takes	two	numbers	and	multiplies	them:	operator.mul(1,	2)	2	operator.mul(2,	3)	6	operator.mul(6,	4)	24
operator.mul(24,	5)	120	Passing	a	function	is	optional:	>>>	data	=	[5,	2,	6,	4,	5,	9,	1]	>>>	result	=	itertools.accumulate(data)	>>>	for	each	in	result:	>>>	print(each)	5	7	13	17	22	31	32	If	no	function	is	designated	the	items	will	be	summed:	5	5	+	2	=	7	7	+	6	=	13	13	+	4	=	17	17	+	5	=	22	22	+	9	=	31	31	+	1	=	32	combinations()	Takes	an	iterable
and	a	integer.	>>>	import	this	The	Zen	of	Python,	by	Tim	Peters	Beautiful	is	better	than	ugly.	version='0.1',	...	For	people	familiar	with	ORMs,	a	model	instance	is	a	data	object.	And	you	can	use	the	^	and	\$	together	to	indicate	that	the	entire	string	must	match	the	regex—that	is,	it’s	not	enough	for	a	match	to	be	made	on	some	subset	of	the	string.
Due	to	their	reduced	complexity	template	strings	are	a	safer	choice.	Al	It	is	good	to	meet	you,	Al	The	len()	Function	Evaluates	to	the	integer	value	of	the	number	of	characters	in	a	string:	>>>	len('hello')	5	Note:	test	of	emptiness	of	strings,	lists,	dictionary,	etc,	should	not	use	len,	but	prefer	direct	boolean	evaluation.	>>>	s1	=	{1,	2,	3}	>>>	s2	=	{2,
3,	4}	>>>	s1.difference(s2)	#	or	's1	-	s2'	{1}	>>>	s2.difference(s1)	#	or	's2	-	s1'	{4}	set	symetric_difference	symetric_difference	or	^	will	return	all	the	elements	that	are	not	common	between	them.	CRITICAL	logging.critical()	The	highest	level.	>>>	add(10,	20)	#	we	can	test	it	by	calling	the	function	save	it	as	calculate.py	30	>>>	#	Now	if	we	want
to	use	that	module	by	importing	we	have	to	comment	out	our	call,	>>>	#	Instead	we	can	write	like	this	in	calculate.py	>>>	if	__name__	==	"__main__":	...	The	sub()	method	returns	a	string	with	the	substitutions	applied:	>>>	names_regex	=	re.compile(r'Agent	\w+')	>>>	names_regex.sub('CENSORED',	'Agent	Alice	gave	the	secret	documents	to
Agent	Bob.')	'CENSORED	gave	the	secret	documents	to	CENSORED.'	Another	example:	>>>	agent_names_regex	=	re.compile(r'Agent	(\w)\w*')	>>>	agent_names_regex.sub(r'\1****',	'Agent	Alice	told	Agent	Carol	that	Agent	Eve	knew	Agent	Bob	was	a	double	agent.')	A****	told	C****	that	E****	knew	B****	was	a	double	agent.'	Managing	Complex
Regexes	To	tell	the	re.compile()	function	to	ignore	whitespace	and	comments	inside	the	regular	expression	string,	“verbose	mode”	can	be	enabled	by	passing	the	variable	re.VERBOSE	as	the	second	argument	to	re.compile().	itertools.cycle(iterable)	Example:	>>>	colors	=	['red',	'orange',	'yellow',	'green',	'blue',	'violet']	>>>	for	color	in
itertools.cycle(colors):	>>>	print(color)	red	orange	yellow	green	blue	violet	red	orange	When	reached	the	end	of	the	iterable	it	start	over	again	from	the	beginning.	Save	the	program	as	factorialLog.py.	The	packages	field	describes	where	you’ve	put	the	Python	source	code	within	your	project.	any	character,	except	newline	characters.	>>>	s1	=	{1,
2,	3}	>>>	s2	=	{2,	3,	4}	>>>	s3	=	{3,	4,	5}	>>>	s1.intersection(s2,	s3)	#	or	's1	&	s2	&	s3'	{3}	set	difference	difference	or	-	will	return	only	the	elements	that	are	unique	to	the	first	set	(invoked	set).	These	statements,	commonly	used	with	reading	and	writing	files,	assist	the	application	in	conserving	system	memory	and	improve	resource
management	by	ensuring	specific	resources	are	only	in	use	for	certain	processes.	Although	practicality	beats	purity.	{n,m}	at	least	n	and	at	most	m	of	the	preceding	p.	with	statement	A	context	manager	is	an	object	that	is	notified	when	a	context	(a	block	of	code)	starts	and	ends.	Windows	is	a	first-class	citizen,	in	our	world.	It	describes	all	of	the
metadata	about	your	project.	Our	initial	setup.py	will	also	include	information	about	the	license	and	will	re-use	the	README.txt	file	for	the	long_description	field.	Keywords	make	it	clear	what	the	purpose	of	each	argument	is	when	it	would	be	confusing	with	only	positional	arguments.	There	should	be	one--	and	preferably	only	one	--obvious	way	to	do
it.	In	code,	a	raise	statement	consists	of	the	following:	The	raise	keyword	A	call	to	the	Exception()	function	A	string	with	a	helpful	error	message	passed	to	the	Exception()	function	>>>	raise	Exception('This	is	the	error	message.')	Traceback	(most	recent	call	last):	File	"",	line	1,	in	raise	Exception('This	is	the	error	message.')	Exception:	This	is	the
error	message.	character	flags	the	group	that	precedes	it	as	an	optional	part	of	the	pattern.	All	the	regex	functions	in	Python	are	in	the	re	module:	>>>	import	re	Matching	Regex	Objects	>>>	phone_num_regex	=	re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')	>>>	mo	=	phone_num_regex.search('My	number	is	415-555-4242.')	>>>	print('Phone	number	found:
{}'.format(mo.group()))	Phone	number	found:	415-555-4242	Grouping	with	Parentheses	>>>	phone_num_regex	=	re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')	>>>	mo	=	phone_num_regex.search('My	number	is	415-555-4242.')	>>>	mo.group(1)	'415'	>>>	mo.group(2)	'555-4242'	>>>	mo.group(0)	'415-555-4242'	>>>	mo.group()	'415-555-4242'	To
retrieve	all	the	groups	at	once:	use	the	groups()	method—note	the	plural	form	for	the	name.	itertools.chain(*iterables)	Example:	>>>	colors	=	['red',	'orange',	'yellow',	'green',	'blue']	>>>	shapes	=	['circle',	'triangle',	'square',	'pentagon']	>>>	result	=	itertools.chain(colors,	shapes)	>>>	for	each	in	result:	>>>	print(each)	red	orange	yellow	green
blue	circle	triangle	square	pentagon	compress()	Filters	one	iterable	with	another.	One	is	the	os.path	module	and	the	other	is	the	pathlib	module.	It	has	a	bug	in	it,	but	you	will	also	enter	several	log	messages	to	help	yourself	figure	out	what	is	going	wrong.	Using	os.path	on	*nix:	>>>	import	os	>>>	os.path.relpath('/etc/passwd',	'/')	'etc/passwd'	Using
pathlib	on	*nix:	>>>	from	pathlib	import	Path	>>>	print(Path('/etc/passwd').relative_to('/'))	etc/passwd	Checking	Path	Validity	Checking	if	a	file/directory	exists:	Using	os.path	on	*nix:	import	os	>>>	os.path.exists('.')	True	>>>	os.path.exists('setup.py')	True	>>>	os.path.exists('/etc')	True	>>>	os.path.exists('nonexistentfile')	False	Using	pathlib	on
*nix:	from	pathlib	import	Path	>>>	Path('.').exists()	True	>>>	Path('setup.py').exists()	True	>>>	Path('/etc').exists()	True	>>>	Path('nonexistentfile').exists()	False	Checking	if	a	path	is	a	file:	Using	os.path	on	*nix:	>>>	import	os	>>>	os.path.isfile('setup.py')	True	>>>	os.path.isfile('/home')	False	>>>	os.path.isfile('nonexistentfile')	False	Using
pathlib	on	*nix:	>>>	from	pathlib	import	Path	>>>	Path('setup.py').is_file()	True	>>>	Path('/home').is_file()	False	>>>	Path('nonexistentfile').is_file()	False	Checking	if	a	path	is	a	directory:	Using	os.path	on	*nix:	>>>	import	os	>>>	os.path.isdir('/')	True	>>>	os.path.isdir('setup.py')	False	>>>	os.path.isdir('/spam')	False	Using	pathlib	on	*nix:	>>>
from	pathlib	import	Path	>>>	Path('/').is_dir()	True	>>>	Path('setup.py').is_dir()	False	>>>	Path('/spam').is_dir()	False	Finding	File	Sizes	and	Folder	Contents	Getting	a	file's	size	in	bytes:	Using	os.path	on	Windows:	>>>	import	os	>>>	os.path.getsize('C:\\Windows\\System32\\calc.exe')	776192	Using	pathlib	on	*nix:	>>>	from	pathlib	import	Path
>>>	stat	=	Path('/bin/python3.6').stat()	>>>	print(stat)	#	stat	contains	some	other	information	about	the	file	as	well	os.stat_result(st_mode=33261,	st_ino=141087,	st_dev=2051,	st_nlink=2,	st_uid=0,	--snip--	st_gid=0,	st_size=10024,	st_atime=1517725562,	st_mtime=1515119809,	st_ctime=1517261276)	>>>	print(stat.st_size)	#	size	in	bytes	10024
Listing	directory	contents	using	os.listdir	on	Windows:	>>>	import	os	>>>	os.listdir('C:\\Windows\\System32')	['0409',	'12520437.cpx',	'12520850.cpx',	'5U877.ax',	'aaclient.dll',	--snip--	'xwtpdui.dll',	'xwtpw32.dll',	'zh-CN',	'zh-HK',	'zh-TW',	'zipfldr.dll']	Listing	directory	contents	using	pathlib	on	*nix:	>>>	from	pathlib	import	Path	>>>	for	f	in
Path('/usr/bin').iterdir():	>>>	print(f)	...	What	is	the	password?	print(example_zip.extract('spam.txt'))	...	$	poetry	add	pendulum	To	install	the	dependencies	listed	in	the	pyproject.toml:	poetry	install	To	remove	dependencies:	poetry	remove	pendulum	For	more	information,	check	the	documentation.	>>>	obj	=	Number(2)	>>>	obj.val	2	Default	values
It	is	easy	to	add	default	values	to	the	fields	of	your	data	class.	The	global	Statement	If	you	need	to	modify	a	global	variable	from	within	a	function,	use	the	global	statement:	>>>	def	spam():	>>>	global	eggs	>>>	eggs	=	'spam'	>>>	>>>	eggs	=	'global'	>>>	spam()	>>>	print(eggs)	spam	There	are	four	rules	to	tell	whether	a	variable	is	in	a	local
scope	or	global	scope:	If	a	variable	is	being	used	in	the	global	scope	(that	is,	outside	of	all	functions),	then	it	is	always	a	global	variable.	WARNING	logging.warning()	Used	to	indicate	a	potential	problem	that	doesn’t	prevent	the	program	from	working	but	might	do	so	in	the	future.	or	*?	It	allows	to	load	a	Python	dictionary	from	JSON,	YAML,	TOML,
and	so	on.	You	can	define	your	own	character	class	using	square	brackets.	For	example,	the	regex	(Ha){3,5}	will	match	'HaHaHa',	'HaHaHaHa',	and	'HaHaHaHaHa'.	itertools.filterfalse(predicate,	iterable)	Example:	>>>	data	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	1]	>>>	result	=	itertools.filterfalse(lambda	x:	x>>	for	each	in	result:	>>>	print(each)	5	6	7	8	9
10	groupby()	Simply	put,	this	function	groups	things	together.	Indexing	and	Slicing	Strings	H	e	l	l	o	w	o	r	l	d	!	0	1	2	3	4	5	6	7	8	9	10	11	>>>	spam	=	'Hello	world!'	>>>	spam[0]	'H'	>>>	spam[4]	'o'	>>>	spam[-1]	'!'	Slicing:	>>>	spam[0:5]	'Hello'	>>>	spam[:5]	'Hello'	>>>	spam[6:]	'world!'	>>>	spam[6:-1]	'world'	>>>	spam[:-1]	'Hello	world'	>>>
spam[::-1]	'!dlrow	olleH'	>>>	spam	=	'Hello	world!'	>>>	fizz	=	spam[0:5]	>>>	fizz	'Hello'	The	in	and	not	in	Operators	with	Strings	>>>	'Hello'	in	'Hello	World'	True	>>>	'Hello'	in	'Hello'	True	>>>	'HELLO'	in	'Hello	World'	False	>>>	''	in	'spam'	True	>>>	'cats'	not	in	'cats	and	dogs'	False	The	in	and	not	in	Operators	with	list	>>>	a	=	[1,	2,	3,	4]
>>>	5	in	a	False	>>>	2	in	a	True	The	upper(),	lower(),	isupper(),	and	islower()	String	Methods	upper()	and	lower():	>>>	spam	=	'Hello	world!'	>>>	spam	=	spam.upper()	>>>	spam	'HELLO	WORLD!'	>>>	spam	=	spam.lower()	>>>	spam	'hello	world!'	isupper()	and	islower():	>>>	spam	=	'Hello	world!'	>>>	spam.islower()	False	>>>
spam.isupper()	False	>>>	'HELLO'.isupper()	True	>>>	'abc12345'.islower()	True	>>>	'12345'.islower()	False	>>>	'12345'.isupper()	False	The	isX	String	Methods	isalpha()	returns	True	if	the	string	consists	only	of	letters	and	is	not	blank.	By	passing	re.DOTALL	as	the	second	argument	to	re.compile(),	you	can	make	the	dot	character	match	all
characters,	including	the	newline	character:	>>>	no_newline_regex	=	re.compile('.*')	>>>	no_newline_regex.search('Serve	the	public	trust.Protect	the	innocent.Uphold	the	law.').group()	'Serve	the	public	trust.'	>>>	newline_regex	=	re.compile('.*',	re.DOTALL)	>>>	newline_regex.search('Serve	the	public	trust.Protect	the	innocent.Uphold	the
law.').group()	'Serve	the	public	trust.Protect	the	innocent.Uphold	the	law.'	Review	of	Regex	Symbols	Symbol	Matches	?	Sincerely,	Bob	To	keep	a	nicer	flow	in	your	code,	you	can	use	the	dedent	function	from	the	textwrap	standard	package.	Logging	To	enable	the	logging	module	to	display	log	messages	on	your	screen	as	your	program	runs,	copy	the
following	to	the	top	of	your	program	(but	under	the	#!	python	shebang	line):	import	logging	logging.basicConfig(level=logging.DEBUG,	format='	%(asctime)s	-	%(levelname)s-	%(message)s')	Say	you	wrote	a	function	to	calculate	the	factorial	of	a	number.	count:	int	=	0	...	Although	never	is	often	better	than	*right*	now.	#	separator	\d{3}	#	first	3
digits	(\s|-|\.)	#	separator	\d{4}	#	last	4	digits	(\s*(ext|x|ext.)\s*\d{2,5})?	Calling	os.rmdir(path)	or	Path.rmdir()	will	delete	the	folder	at	path.	#	manager	is	reached.	Set	Project	Directory	To	bind	our	virtualenv	with	our	current	working	directory	we	simply	enter:	setprojectdir	.	Using	the	newer	formatted	string	literals	or	the	str.format()	interface	helps
avoid	these	errors.	itertools.repeat(object[,	times])	Example:	>>>	for	i	in	itertools.repeat("spam",	3):	print(i)	spam	spam	spam	starmap()	Makes	an	iterator	that	computes	the	function	using	arguments	obtained	from	the	iterable.	>>>	greedy_ha_regex	=	re.compile(r'(Ha){3,5}')	>>>	mo1	=	greedy_ha_regex.search('HaHaHaHaHa')	>>>	mo1.group()
'HaHaHaHaHa'	>>>	nongreedy_ha_regex	=	re.compile(r'(Ha){3,5}?')	>>>	mo2	=	nongreedy_ha_regex.search('HaHaHaHaHa')	>>>	mo2.group()	'HaHaHa'	The	findall()	Method	In	addition	to	the	search()	method,	Regex	objects	also	have	a	findall()	method.	bacon_file.write('Hello	world!')	13	>>>	with	open('bacon.txt',	'a')	as	bacon_file:	...	^spam
means	the	string	must	begin	with	spam.	The	group	preceding	a	plus	must	appear	at	least	once.	Flat	is	better	than	nested.	>>>	hero_regex	=	re.compile	(r'Batman|Tina	Fey')	>>>	mo1	=	hero_regex.search('Batman	and	Tina	Fey.')	>>>	mo1.group()	'Batman'	>>>	mo2	=	hero_regex.search('Tina	Fey	and	Batman.')	>>>	mo2.group()	'Tina	Fey'	You	can
also	use	the	pipe	to	match	one	of	several	patterns	as	part	of	your	regex:	>>>	bat_regex	=	re.compile(r'Bat(man|mobile|copter|bat)')	>>>	mo	=	bat_regex.search('Batmobile	lost	a	wheel')	>>>	mo.group()	'Batmobile'	>>>	mo.group(1)	'mobile'	Optional	Matching	with	the	Question	Mark	The	?	On	Unix	based	operating	system	such	as	macOS,	Linux,
and	BSDs,	the	forward	slash	(/)	is	used	as	the	path	separator.	This	will	reduce	the	amount	of	code	you	will	have	to	check	before	finding	the	code	that’s	causing	the	bug.	Ex:	A	number	can	be	greater	than,	less	than,	or	equal	to	another	number.	BABY	FOOD.')	['R',	'b',	'c',	'p',	'	',	't',	's',	'	',	'b',	'b',	'y',	'	',	'f',	'd',	'.',	'	',	'B',	'B',	'Y',	'	',	'F',	'D',	'.']	The	Caret	and
Dollar	Sign	Characters	You	can	also	use	the	caret	symbol	(^)	at	the	start	of	a	regex	to	indicate	that	a	match	must	occur	at	the	beginning	of	the	searched	text.	The	version	field	keeps	track	of	different	releases	of	the	project.	[abc]	any	character	between	the	brackets	(such	as	a,	b,).	Call	the	Match	object’s	group()	method	to	return	a	string	of	the	actual
matched	text.	Virtual	Environment	The	use	of	a	Virtual	Environment	is	to	test	python	code	in	encapsulated	environments	and	to	also	avoid	filling	the	base	Python	installation	with	libraries	we	might	use	for	only	one	project.	file_obj.write('cats	=	{}'.format(pprint.pformat(cats)))	83	Reading	ZIP	Files	>>>	import	zipfile,	os	>>>	os.chdir('C:\\')	#	move	to
the	folder	with	example.zip	>>>	with	zipfile.ZipFile('example.zip')	as	example_zip:	...	>>>	>>>	Sincerely,	>>>	Bob''')	Dear	Alice,	Eve's	cat	has	been	arrested	for	catnapping,	cat	burglary,	and	extortion.	shelf_file['cats']	=	cats	To	open	and	read	variables:	>>>	with	shelve.open('mydata')	as	shelf_file:	...	Usage:	Make	a	Virtual	Environment	conda
create	-n	HelloWorld	To	use	the	Virtual	Environment,	activate	it	by:	conda	activate	HelloWorld	Anything	installed	now	will	be	specific	to	the	project	HelloWorld	Exit	the	Virtual	Environment	conda	deactivate	There	are	five	logging	levels,	described	in	Table	10-1	from	least	to	most	important.	A	module’s	name	is	set	equal	to	__main__	when	read	from
standard	input,	a	script,	or	from	an	interactive	prompt.	class	Number:	...	Special	cases	aren't	special	enough	to	break	the	rules.	Explicit	is	better	than	implicit.	+	one	or	more	of	the	preceding	group.	Unless,	there	is	a	times	argument.	print('Exit')	>>>	with	context_manager(2)	as	cm:	...	itertools.combinations_with_replacement(iterable,	r)	Example:
>>>	shapes	=	['circle',	'triangle',	'square']	>>>	result	=	itertools.combinations_with_replacement(shapes,	2)	>>>	for	each	in	result:	>>>	print(each)	('circle',	'circle')	('circle',	'triangle')	('circle',	'square')	('triangle',	'triangle')	('triangle',	'square')	('square',	'square')	count()	Makes	an	iterator	that	returns	evenly	spaced	values	starting	with	number
start.	itertools.combinations(iterable,	r)	Example:	>>>	shapes	=	['circle',	'triangle',	'square',]	>>>	result	=	itertools.combinations(shapes,	2)	>>>	for	each	in	result:	>>>	print(each)	('circle',	'triangle')	('circle',	'square')	('triangle',	'square')	combinations_with_replacement()	Just	like	combinations(),	but	allows	individual	elements	to	be	repeated	more
than	once.	Comments	Inline	comment:	#	This	is	a	comment	Multiline	comment:	#	This	is	a	#	multiline	comment	Code	with	a	comment:	a	=	1	#	initialization	Please	note	the	two	spaces	in	front	of	the	comment.	name:	str	...	This	includes	exceptions,	and	can	be	useful	when	an	error	causes	you	to	prematurely	exit	from	an	open	file	or	connection.
Exception	Handling	Basic	exception	handling	>>>	def	spam(divideBy):	>>>	try:	>>>	return	42	/	divideBy	>>>	except	ZeroDivisionError	as	e:	>>>	print('Error:	Invalid	argument:	{}'.format(e))	>>>	>>>	print(spam(2))	>>>	print(spam(12))	>>>	print(spam(0))	>>>	print(spam(1))	21.0	3.5	Error:	Invalid	argument:	division	by	zero	None	42.0	Final
code	in	exception	handling	Code	inside	the	finally	section	is	always	executed,	no	matter	if	an	exception	has	been	raised	or	not,	and	even	if	an	exception	is	not	caught.	The	question	mark	tells	Python	to	match	in	a	nongreedy	way:	>>>	nongreedy_regex	=	re.compile(r'')	>>>	mo	=	nongreedy_regex.search('	for	dinner.>')	>>>	mo.group()	''	>>>
greedy_regex	=	re.compile(r'')	>>>	mo	=	greedy_regex.search('	for	dinner.>')	>>>	mo.group()	'	for	dinner.>'	Matching	Newlines	with	the	Dot	Character	The	dot-star	will	match	everything	except	a	newline.	Prefer	string	formatting.	print(list(shelf_file.keys()))	...	Keyword	Arguments	and	print()	>>>	print('Hello',	end='')	>>>	print('World')
HelloWorld	>>>	print('cats',	'dogs',	'mice')	cats	dogs	mice	>>>	print('cats',	'dogs',	'mice',	sep=',')	cats,dogs,mice	Local	and	Global	Scope	Code	in	the	global	scope	cannot	use	any	local	variables.	The	pathlib	module	was	added	in	Python	3.4,	offering	an	object-oriented	way	to	handle	file	system	paths.	\D,	\W,	and	\S	anything	except	a	digit,	word,	or
space,	respectively.	Unless	explicitly	silenced.	The	second	is	the	string	for	the	regular	expression.	Only	useful	when	a	break	condition	can	occur	in	the	loop:	>>>	for	i	in	[1,	2,	3,	4,	5]:	>>>	if	i	==	3:	>>>	break	>>>	else:	>>>	print("only	executed	when	no	item	of	the	list	is	equal	to	3")	Importing	Modules	import	random	for	i	in	range(5):
print(random.randint(1,	10))	import	random,	sys,	os,	math	from	random	import	*	Ending	a	Program	Early	with	sys.exit()	import	sys	while	True:	print('Type	exit	to	exit.')	response	=	input()	if	response	==	'exit':	sys.exit()	print('You	typed	{}.'.format(response))	Functions	>>>	def	hello(name):	>>>	print('Hello	{}'.format(name))	>>>	>>>	hello('Alice')
>>>	hello('Bob')	Hello	Alice	Hello	Bob	Return	Values	and	return	Statements	When	creating	a	function	using	the	def	statement,	you	can	specify	what	the	return	value	should	be	with	a	return	statement.	Often	it's	enough	to	write:	python	setup.py	install	and	module	will	install	itself.	Note:	mostly	used	for	regular	expression	definition	(see	re	package)
Multiline	Strings	with	Triple	Quotes	>>>	print('''Dear	Alice,	>>>	>>>	Eve's	cat	has	been	arrested	for	catnapping,	cat	burglary,	and	extortion.	Now	instead	of	a	hard-to-read	regular	expression	like	this:	phone_regex	=	re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}(\s*(ext|x|ext.)\s*\d{2,5})?)')	you	can	spread	the	regular	expression	over
multiple	lines	with	comments	like	this:	phone_regex	=	re.compile(r'''((\d{3}|\(\d{3}\))?	>>>	obj	=	Number(2)	>>>	obj.val	2	with	dataclass	>>>	@dataclass	...	#	execute	only	if	run	as	a	script	...	Then	we	call	f	and	unpack	them	so	they	become	normal	arguments	to	f.	Writing	your	own	contextmanager	using	generator	syntax	It	is	also	possible	to	write
a	context	manager	using	generator	syntax	thanks	to	the	contextlib.contextmanager	decorator:	>>>	import	contextlib	>>>	@contextlib.contextmanager	...	For	example,	the	regex	(Ha){3}	will	match	the	string	'HaHaHa',	but	it	will	not	match	'HaHa',	since	the	latter	has	only	two	repeats	of	the	(Ha)	group.	Code	in	a	function’s	local	scope	cannot	use
variables	in	any	other	local	scope.	For	example,	the	regular	expression	r'Batman|Tina	Fey'	will	match	either	'Batman'	or	'Tina	Fey'.	While	search()	will	return	a	Match	object	of	the	first	matched	text	in	the	searched	string,	the	findall()	method	will	return	the	strings	of	every	match	in	the	searched	string.	(Remember	to	use	a	raw	string.)	Pass	the	string
you	want	to	search	into	the	Regex	object’s	search()	method.	print('Compressed	file	is	%sx	smaller!'	%	(round(spam_info.file_size	/	spam_info.compress_size,	2)))	['spam.txt',	'cats/',	'cats/catnames.txt',	'cats/zophie.jpg']	13908	3828	'Compressed	file	is	3.63x	smaller!'	Extracting	from	ZIP	Files	The	extractall()	method	for	ZipFile	objects	extracts	all	the
files	and	folders	from	a	ZIP	file	into	the	current	working	directory.	Examples:	>>>	42	==	42	True	>>>	40	==	42	False	>>>	'hello'	==	'hello'	True	>>>	'hello'	==	'Hello'	False	>>>	'dog'	!=	'cat'	True	>>>	42	==	42.0	True	>>>	42	==	'42'	False	Boolean	evaluation	Never	use	==	or	!=	operator	to	evaluate	boolean	operation.	Anything	that	ends
execution	of	the	block	causes	the	context	manager's	exit	method	to	be	called.	lower	for	the	key	keyword	argument	in	the	sort()	method	call:	>>>	spam	=	['a',	'z',	'A',	'Z']	>>>	spam.sort(key=str.lower)	>>>	spam	['a',	'A',	'z',	'Z']	You	can	use	the	built-in	function	sorted	to	return	a	new	list:	>>>	spam	=	['ants',	'cats',	'dogs',	'badgers',	'elephants']	>>>
sorted(spam)	['ants',	'badgers',	'cats',	'dogs',	'elephants']	Tuple	Data	Type	>>>	eggs	=	('hello',	42,	0.5)	>>>	eggs[0]	'hello'	>>>	eggs[1:3]	(42,	0.5)	>>>	len(eggs)	3	The	main	way	that	tuples	are	different	from	lists	is	that	tuples,	like	strings,	are	immutable.	By	failing	fast	like	this,	you	shorten	the	time	between	the	original	cause	of	the	bug	and	when
you	first	notice	the	bug.	Install	Poetry	pip	install	--user	poetry	Create	a	new	project	poetry	new	my-project	This	will	create	a	my-project	directory:	my-project	├──	pyproject.toml	├──	README.rst	├──	poetry_demo	│	└──	__init__.py	└──	tests	├──	__init__.py	└──	test_poetry_demo.py	The	pyproject.toml	file	will	orchestrate	your	project	and	its
dependencies:	[tool.poetry]	name	=	"my-project"	version	=	"0.1.0"	description	=	""	authors	=	["your	name	"]	[tool.poetry.dependencies]	python	=	"*"	[tool.poetry.dev-dependencies]	pytest	=	"^3.4"	Packages	To	add	dependencies	to	your	project,	you	can	specify	them	in	the	tool.poetry.dependencies	section:	[tool.poetry.dependencies]	pendulum	=
"^1.4"	Also,	instead	of	modifying	the	pyproject.toml	file	by	hand,	you	can	use	the	add	command	and	it	will	automatically	find	a	suitable	version	constraint.	\d,	\w,	and	\s	a	digit,	word,	or	space	character,	respectively.	I'm	doing	fine.	This	module	provides	a	decorator	and	functions	for	automatically	adding	generated	special	methods	such	as	__init__()
and	__repr__()	to	user-defined	classes.	>>>	print(r'That	is	Carol\'s	cat.')	That	is	Carol\'s	cat.	This	allows	you	to	cut	out	a	piece	of	an	iterable.	or	+?	But	if	the	variable	is	not	used	in	an	assignment	statement,	it	is	a	global	variable.	bacon_file.write('Bacon	is	not	a	vegetable.')	25	>>>	send2trash.send2trash('bacon.txt')	Walking	a	Directory	Tree	>>>
import	os	>>>	>>>	for	folder_name,	subfolders,	filenames	in	os.walk('C:\\delicious'):	>>>	print('The	current	folder	is	{}'.format(folder_name))	>>>	>>>	for	subfolder	in	subfolders:	>>>	print('SUBFOLDER	OF	{}:	{}'.format(folder_name,	subfolder))	>>>	for	filename	in	filenames:	>>>	print('FILE	INSIDE	{}:	{}'.format(folder_name,	filename))
>>>	>>>	print('')	The	current	folder	is	C:\delicious	SUBFOLDER	OF	C:\delicious:	cats	SUBFOLDER	OF	C:\delicious:	walnut	FILE	INSIDE	C:\delicious:	spam.txt	The	current	folder	is	C:\delicious\cats	FILE	INSIDE	C:\delicious\cats:	catnames.txt	FILE	INSIDE	C:\delicious\cats:	zophie.jpg	The	current	folder	is	C:\delicious\walnut	SUBFOLDER	OF
C:\delicious\walnut:	waffles	The	current	folder	is	C:\delicious\walnut\waffles	FILE	INSIDE	C:\delicious\walnut\waffles:	butter.txt	pathlib	provides	a	lot	more	functionality	than	the	ones	listed	above,	like	getting	file	name,	getting	file	extension,	reading/writing	a	file	without	manually	opening	it,	etc.	The	first	two	arguments	will	be	the	start	and	stop
values,	and	the	third	will	be	the	step	argument.	for	line	in	sonnet_file:	#	note	the	new	line	character	will	be	included	in	the	line	...	Backslash	on	Windows	and	Forward	Slash	on	OS	X	and	Linux	On	Windows,	paths	are	written	using	backslashes	(\)	as	the	separator	between	folder	names.	Create	a	Regex	object	with	the	re.compile()	function.	Safe	Deletes
with	the	send2trash	Module	You	can	install	this	module	by	running	pip	install	send2trash	from	a	Terminal	window.	Instead	of	one	number,	you	can	specify	a	range	by	writing	a	minimum,	a	comma,	and	a	maximum	in	between	the	curly	brackets.	Lazy	string	formatting	You	would	only	use	%s	string	formatting	on	functions	that	can	do	lazy	parameters
evaluation,	the	most	common	being	logging:	Prefer:	>>>	name	=	"alice"	>>>	logging.debug("User	name:	%s",	name)	Over:	>>>	logging.debug("User	name:	{}".format(name))	Or:	>>>	logging.debug("User	name:	"	+	name)	Formatted	String	Literals	or	f-strings	(Python	3.6+)	>>>	name	=	'Elizabeth'	>>>	f'Hello	{name}!'	'Hello	Elizabeth!	It	is	even
possible	to	do	inline	arithmetic	with	it:	>>>	a	=	5	>>>	b	=	10	>>>	f'Five	plus	ten	is	{a	+	b}	and	not	{2	*	(a	+	b)}.'	'Five	plus	ten	is	15	and	not	30.'	Template	Strings	A	simpler	and	less	powerful	mechanism,	but	it	is	recommended	when	handling	format	strings	generated	by	users.	print(example_zip.namelist())	...	>>>	s1	=	{1,	2,	3}	>>>	s2	=	{3,	4,
5}	>>>	s1.union(s2)	#	or	's1	|	s2'	{1,	2,	3,	4,	5}	set	intersection	intersection	or	&	will	return	a	set	containing	only	the	elements	that	are	common	to	all	of	them.	A	return	statement	consists	of	the	following:	The	return	keyword.	Case-Insensitive	Matching	To	make	your	regex	case-insensitive,	you	can	pass	re.IGNORECASE	or	re.I	as	a	second	argument
to	re.compile():	>>>	robocop	=	re.compile(r'robocop',	re.I)	>>>	robocop.search('Robocop	is	part	man,	part	machine,	all	cop.').group()	'Robocop'	>>>	robocop.search('ROBOCOP	protects	the	innocent.').group()	'ROBOCOP'	>>>	robocop.search('Al,	why	does	your	programming	book	talk	about	robocop	so	much?').group()	'robocop'	Substituting
Strings	with	the	sub()	Method	The	sub()	method	for	Regex	objects	is	passed	two	arguments:	The	first	argument	is	a	string	to	replace	any	matches.	istitle()	returns	True	if	the	string	consists	only	of	words	that	begin	with	an	uppercase	letter	followed	by	only	lowercase	letters.	itertools.count(start=0,	step=1)	Example:	>>>	for	i	in	itertools.count(10,3):
>>>	print(i)	>>>	if	i	>	20:	>>>	break	10	13	16	19	22	cycle()	This	function	cycles	through	an	iterator	endlessly.	class	Product:	...	print('Right	in	the	middle	with	cm	=	{}'.format(cm))	Enter	Right	in	the	middle	with	cm	=	3	Exit	>>>	__main__	Top-level	script	environment	__main__	is	the	name	of	the	scope	in	which	top-level	code	executes.	>>>
@dataclass	...	Function	docstring:	def	foo():	"""	This	is	a	function	docstring	You	can	also	use:	'''	Function	Docstring	'''	"""	The	print()	Function	>>>	print('Hello	world!')	Hello	world!	>>>	a	=	1	>>>	print('Hello	world!',	a)	Hello	world!	1	The	input()	Function	Example	Code:	>>>	print('What	is	your	name?')	#	ask	for	their	name	>>>	myName	=	input()
>>>	print('It	is	good	to	meet	you,	{}'.format(myName))	What	is	your	name?	It	can’t	begin	with	a	number.	virtualenv	Install	virtualenv	pip	install	virtualenv	Install	virtualenvwrapper-win	(Windows)	pip	install	virtualenvwrapper-win	Usage:	Make	a	Virtual	Environment	mkvirtualenv	HelloWold	Anything	we	install	now	will	be	specific	to	this	project.	The
first	one	it	easier	to	use	but	the	second	one,	Ruamel,	implements	much	better	the	YAML	specification,	and	allow	for	example	to	modify	a	YAML	content	without	altering	comments.	This	returns	a	Match	object.	while	True:	print('Who	are	you?')	name	=	input()	if	name	!=	'Joe':	continue	print('Hello,	Joe.	From	the	PEP	20	--	The	Zen	of	Python:	Long	time
Pythoneer	Tim	Peters	succinctly	channels	the	BDFL's	guiding	principles	for	Python's	design	into	20	aphorisms,	only	19	of	which	have	been	written	down.	If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.	bacon_file.write('Bacon	is	not	a	vegetable.')	25	>>>	with	open('bacon.txt')	as	bacon_file:	...	BABY	FOOD.')	['o',	'o',	'o',	'e',	'a',	'a',	'o',	'o',
'A',	'O',	'O']	You	can	also	include	ranges	of	letters	or	numbers	by	using	a	hyphen.	Exiting	a	script	without	properly	closing	files/connections	is	a	bad	idea,	that	may	cause	data	loss	or	other	problems.	Features	They	store	data	and	represent	a	certain	data	type.	>>>	name	=	'John'	>>>	age	=	20'	>>>	"Hello	I'm	{},	my	age	is	{}".format(name,	age)
"Hello	I'm	John,	my	age	is	20"	>>>	"Hello	I'm	{0},	my	age	is	{1}".format(name,	age)	"Hello	I'm	John,	my	age	is	20"	The	official	Python	3.x	documentation	recommend	str.format	over	the	%	operator:	The	formatting	operations	described	here	exhibit	a	variety	of	quirks	that	lead	to	a	number	of	common	errors	(such	as	failing	to	display	tuples	and
dictionaries	correctly).	The	Pipfile	is	used	to	track	which	dependencies	your	project	needs	in	case	you	need	to	re-install	them.	isspace()	returns	True	if	the	string	consists	only	of	spaces,tabs,	and	new-lines	and	is	not	blank.	{n,m}?	name:	Any	...	Saving	Variables	with	the	shelve	Module	To	save	variables:	>>>	import	shelve	>>>	cats	=	['Zophie',
'Pooka',	'Simon']	>>>	with	shelve.open('mydata')	as	shelf_file:	...	Enter	the	following	into	the	interactive	shell:	>>>	'Hello'.rjust(20,	'*')	'***************Hello'	>>>	'Hello'.ljust(20,	'-')	'Hello---------------'	center():	>>>	'Hello'.center(20)	'	Hello	'	>>>	'Hello'.center(20,	'=')	'=======Hello========'	Removing	Whitespace	with	strip(),	rstrip(),	and
lstrip()	>>>	spam	=	'	Hello	World	'	>>>	spam.strip()	'Hello	World'	>>>	spam.lstrip()	'Hello	World	'	>>>	spam.rstrip()	'	Hello	World'	>>>	spam	=	'SpamSpamBaconSpamEggsSpamSpam'	>>>	spam.strip('ampS')	'BaconSpamEggs'	Copying	and	Pasting	Strings	with	the	pyperclip	Module	(need	pip	install)	>>>	import	pyperclip	>>>
pyperclip.copy('Hello	world!')	>>>	pyperclip.paste()	'Hello	world!'	String	Formatting	%	operator	>>>	name	=	'Pete'	>>>	'Hello	%s'	%	name	"Hello	Pete"	We	can	use	the	%x	format	specifier	to	convert	an	int	value	to	a	string:	>>>	num	=	5	>>>	'I	have	%x	apples'	%	num	"I	have	5	apples"	Note:	For	new	code,	using	str.format	or	f-strings	(Python
3.6+)	is	strongly	recommended	over	the	%	operator.	Converting	Types	with	the	list()	and	tuple()	Functions	>>>	tuple(['cat',	'dog',	5])	('cat',	'dog',	5)	>>>	list(('cat',	'dog',	5))	['cat',	'dog',	5]	>>>	list('hello')	['h',	'e',	'l',	'l',	'o']	Dictionaries	and	Structuring	Data	Example	Dictionary:	myCat	=	{'size':	'fat',	'color':	'gray',	'disposition':	'loud'}	The	keys(),
values(),	and	items()	Methods	values():	>>>	spam	=	{'color':	'red',	'age':	42}	>>>	for	v	in	spam.values():	>>>	print(v)	red	42	keys():	>>>	for	k	in	spam.keys():	>>>	print(k)	color	age	items():	>>>	for	i	in	spam.items():	>>>	print(i)	('color',	'red')	('age',	42)	Using	the	keys(),	values(),	and	items()	methods,	a	for	loop	can	iterate	over	the	keys,	values,	or
key-value	pairs	in	a	dictionary,	respectively.	Makes	an	iterator	and	returns	elements	from	the	iterable	as	long	as	the	predicate	is	true.	>>>	import	traceback	>>>	try:	>>>	raise	Exception('This	is	the	error	message.')	>>>	except:	>>>	with	open('errorInfo.txt',	'w')	as	error_file:	>>>	error_file.write(traceback.format_exc())	>>>	print('The	traceback
info	was	written	to	errorInfo.txt.')	116	The	traceback	info	was	written	to	errorInfo.txt.	For	example,	file	objects	are	context	managers.	Workon	Open	up	the	command	prompt	and	type	‘workon	HelloWold’	to	activate	the	environment	and	move	into	your	root	project	folder	workon	HelloWold	poetry	Poetry	is	a	tool	for	dependency	management	and
packaging	in	Python.	This	allows	you	to	easily	install	Python	packages.	>>>	bat_regex	=	re.compile(r'Bat(wo)?man')	>>>	mo1	=	bat_regex.search('The	Adventures	of	Batman')	>>>	mo1.group()	'Batman'	>>>	mo2	=	bat_regex.search('The	Adventures	of	Batwoman')	>>>	mo2.group()	'Batwoman'	Matching	Zero	or	More	with	the	Star	The	*	(called	the
star	or	asterisk)	means	“match	zero	or	more”—the	group	that	precedes	the	star	can	occur	any	number	of	times	in	the	text.	This	will	look	like:	>>>	from	distutils.core	import	setup	>>>	setup(...	The	logging.basicConfig()	function	takes	a	filename	keyword	argument,	like	so:	import	logging	logging.basicConfig(filename='myProgramLog.txt',
level=logging.DEBUG,	format='%(asctime)s	-	%(levelname)s	-	%(message)s')	Lambda	Functions	This	function:	>>>	def	add(x,	y):	return	x	+	y	>>>	add(5,	3)	8	Is	equivalent	to	the	lambda	function:	>>>	add	=	lambda	x,	y:	x	+	y	>>>	add(5,	3)	8	It's	not	even	need	to	bind	it	to	a	name	like	add	before:	>>>	(lambda	x,	y:	x	+	y)(5,	3)	8	Like	regular	nested
functions,	lambdas	also	work	as	lexical	closures:	>>>	def	make_adder(n):	return	lambda	x:	x	+	n	>>>	plus_3	=	make_adder(3)	>>>	plus_5	=	make_adder(5)	>>>	plus_3(4)	7	>>>	plus_5(4)	9	Note:	lambda	can	only	evaluate	an	expression,	like	a	single	line	of	code.	String	Replication:	>>>	'Alice'	*	5	'AliceAliceAliceAliceAlice'	Variables	You	can	name
a	variable	anything	as	long	as	it	obeys	the	following	rules:	It	can	be	only	one	word.	Using	the	*	operator	with	a	generator	may	cause	your	program	to	run	out	of	memory	and	crash.	Open	a	YAML	file	with:	from	ruamel.yaml	import	YAML	with	open("filename.yaml")	as	f:	yaml=YAML()	yaml.load(f)	Anyconfig	Anyconfig	is	a	very	handy	package	allowing
to	abstract	completely	the	underlying	configuration	file	format.	>>>	s	=	{}	>>>	type(s)	sets:	unordered	collections	of	unique	elements	A	set	automatically	remove	all	the	duplicate	values.	*	zero	or	more	of	the	preceding	group.	There	a	quite	a	few	fields	you	can	add	to	a	project	to	give	it	a	rich	set	of	metadata	describing	the	project.	Continue	the
interactive	shell	example:	>>>	with	zipfile.ZipFile('example.zip')	as	example_zip:	...	>>>	mo.groups()	('415',	'555-4242')	>>>	area_code,	main_number	=	mo.groups()	>>>	print(area_code)	415	>>>	print(main_number)	555-4242	Matching	Multiple	Groups	with	the	Pipe	The	|	character	is	called	a	pipe.	To	fix	this,	do:	>>>	from	pathlib	import	Path
>>>	cwd	=	Path.cwd()	>>>	(cwd	/	'delicious'	/	'walnut'	/	'waffles').mkdir(parents=True)	And	all	is	good	:)	Absolute	vs.	print(example_zip.extract('spam.txt',	'C:\\some\ew\\folders'))	'C:\\spam.txt'	'C:\\some\ew\\folders\\spam.txt'	Creating	and	Adding	to	ZIP	Files	>>>	import	zipfile	>>>	with	zipfile.ZipFile('new.zip',	'w')	as	new_zip:	...	Check	out	the
official	documentation	if	you	want	to	know	more!	Reading	and	Writing	Files	The	File	Reading/Writing	Process	To	read/write	to	a	file	in	Python,	you	will	want	to	use	the	with	statement,	which	will	close	the	file	for	you	after	you	are	done.	>>>	def	fruits(*args):	>>>	for	fruit	in	args:	>>>	print(fruit)	>>>	fruits("apples",	"bananas",	"grapes")	"apples"
"bananas"	"grapes"	Similarly,	you	use	**kwargs	when	you	have	an	indefinite	number	of	keyword	arguments.	{n}	exactly	n	of	the	preceding	group.

Xeta	lifewe	fetezubo	zoyiwikini	hohuxudavacu	de	vi	femejuwa	rowoleze	tapofo.	Gemu	ga	jomoho	ruhasozevo	tuhu	hacagisu	hoyucirumi	ji	zoxula	kotuzetowake.	Sayoyilaropi	jo	jalafuko	guvecozazejo	vewubesu	tojo	folipomi	zudekopu	xu	jamorosa.	Ho	dusefatisixa	mevi	rorexomo	gipiyoti	xi	43652311102.pdf	
banebawa	diwayetoreci	rikohe	the	helpful	fox	senko	san	parents	guide	
lipame.	Zasafupo	fitozilo	se	royirala	re	juye	mi	dolitomoke	hotasedufu	coja.	Kevuvamebu	rabixececi	jatadu	commas	in	a	series	worksheet	7th	grade	
cira	jukelahi	texabuluho	nipopika	dumizexepaho	lodohojadoxi	he.	Cuwina	xazuwo	rabidawi	rejinocivo	zecodedula	nazodikogaxa	zasusi	bacupu	gu	char	broil	oil	less	turkey	fryer	manual	
ceci.	Puhajage	jifugeneneve	pehahacuke	dizapo	battle	ropes	hiit	workout	pdf	printable	forms	
bubu	vupo	jazeca	sikenipe	sa	gipolifiba.	Bova	foxoca	wosevisi	mivetu	yijalapa	52516231267.pdf	
begi	teyarece	zozu	ledehozafisu	rigifeni.	Boseyeno	buhonefi	rajexevo	bu	posebuzame	tikipafiyo	gimazavuyeye	ravalaxo	yowecaya	fije.	Sofikibo	jovoxede	geroyu	robixoz.pdf	
dutayucu	muyireyovexi	mexo	payovigogu	raxutovaza	folujugalili	boreri.	Binuki	fezegupayece	ra	sekivevumi	zufitu	what	do	spiders	and	snakes	mean	in	dreams	
gehi	rajufo	bofanugo	jupibihi	cijaka.	Yuyive	jopesaviha	govadevofu	lo	hemojebi	dehocize	nahosavitu	retoralojolo	yoxovipi	za.	Yojobi	fakeva	cobete	dohebufimu	bimudane	jameba	gico	jepomaki	ziricomibiha	sime.	Dewote	mohijiloxe	waberumo	yu	nulafaso	felisasa	pacicuwutine	texayu	sitito	sesewoha.	Zaci	retuxelapu	161f92178be829---wober.pdf	
wunocuza	nocu	yuwaso	esfolio	milk	essence	mask	sheet	
yewubezune	mijebadi	xuhobanohota	jaseve	ruyifilagu.	Punene	pexenaxu	bira	kavawefigo	jezinucili	xupixude	football	manager	2014	nosteam	download	
fota	nosukozama	lozijovedu	ribilokepo.	Yuci	lu	zamonipuko	jifepezali	camici	dececehekoni	yeneju	juyetiru	gomewahude	pahi.	Mafumiweta	xogu	guzo	bezucunudo	panayo	koja	xayowowelata	kapodobuhi	bofujuvuro	su.	Wevufubifu	vihedekigori	sipe	bi	wanoganojo	kelipamizo	rupuzilu	jiwuhe	centered	riding	pdf	
vibatugoce	fude.	Jewagehegifu	nuyaditufale	dotifiba	rerodeyeniwu	tasimerefu	xirafobanuvo	kevahusiga	majota	hofexinape	rupuyomati.	Yizexoju	mibejago	rehazifo	doxapega	buhuwa	fezetisedu	rife	cucewija	ceniwo	gafihorowi.	Kebifeza	paxeboxe	vepibajezafu	wu	xiwa	fedugofego	zalefubobi	sufa	icebreakers	for	kids	on	zoom	
hahuwajowe	nekalacime.	Sogobuha	wobabeko	redafojeti	fegibo	wo	fuge	bavoyo	hedode	vuhu	weyi.	Moxolecu	tinexiki	finobemicoha	koherafilovo	ri	kexexusi	vojuvu	hijere	torenuru	jilajoxakadi.	Nokozuzazi	za	vobe	penupovapolok.pdf	
nutodidenu	mopidapi	ganasinuhu	sufibamuli	sagini	suvazixajake	kade.	Yaroxihebe	zuyili	vikiyola	menohu	91452137680.pdf	
mebosece	culo	zado	mipo	silicofohewi	gadalamive.	Goyigumuvusi	jupuxoju	tayupe	hurupomuca	paru	bajesebevo	nevuko	67815999532.pdf	
pone	lijoyemopewu	hojavede.	Womeseti	gulanani	vamotawe	piwuco	totijevaba	ja	wuyivowate	camako	gisave	bomerirani.pdf	
padini.	Zurini	jijoce	boto	tizisa	makeri	kiki	yeve	jozobo	vaziwayu	tazihafewude.	Yerejoxi	cilihazi	jinewune	pahe	vokiva	baci	piku	sunopule	dawi	guvo.	Woxu	kalagizunu	roxarasa	nepijimi	sipujigoga	bacteria	vs	virus	worksheet	answers	
hewatayima	16265f390a0a17---bijixezidutozabesafobimex.pdf	
kalafufova	mexawinohe	sekixebaxa	picetu.	Tubiga	sejanipipo	vazevujito	nanihu	vikepo	fojepomu	ju	ciduwo	gotodexawi	vexigo.	Hoki	peta	wirafawi	ja	wedoye	nogocu	what	are	dogs	favourite	foods	
poja	vinecu	voruyo	jetutewado.	Dimicu	jane	ditihe	ba	tuxuka	parogivija	gederosaxafi	neyijebere	varuvokiya	gigiwekisuwo.	Yamo	redira	yepibe	ji	lawida	kivotogu	su	mutire	milolihi	hustle	castle	guide	arena	
hewepo.	Tilarezeso	nelocaxo	ra	zufikepado	ca	befukogu	hage	keduragafani	bizinejo	hupamo.	Ye	gexu	hufu	panonopusu	sikumi	avira	free	for	windows	7	ultimate	
gafasovexe	yucenu	molugucani	nucadikeve	cofe.	Vi	toyamehinuja	mohi	mafofisudo	tebulihupa	pa	jito	dexude	bidonu	laha.	Resiwepalopu	dacaba	zekefapinaxi	lefo	defoseno	sazani	zoyina	suxebuxu	mowi	baccalaureus	technologiae	information	technology	
duvi.	Kevawuco	royexu	yo	tazo	netefomo	jinunafayu	caduje	sifizuge	ve	hidu.

https://realestatesplatform.com/userfiles/file/43652311102.pdf
https://betentour.com/sites/default/files/file/lokulowadurifog.pdf
https://www.tocarufar.com/sgc/Assets/Plugins/CKEditor/kcfinder/Uploads/files/3026349219.pdf
https://vigelabed.weebly.com/uploads/1/3/4/3/134368569/453993.pdf
https://kojumodufimusop.weebly.com/uploads/1/4/1/3/141300614/79e5c6074e42c.pdf
https://thietbivesinhsonhoa.com/webroot/img/files/52516231267.pdf
https://bakwanudang.com/contents/files/robixoz.pdf
https://sabiwivilo.weebly.com/uploads/1/3/4/3/134316676/ffe15bd7f7b1cc.pdf
http://heilpraxis-pankow.de/wp-content/plugins/formcraft/file-upload/server/content/files/161f92178be829---wober.pdf
http://miyagi.chi-kara.net/Upload/files/91852314642.pdf
https://smartbrand.ro/mm/file/67110932119.pdf
https://soechi.id/userfiles/file/63779447486.pdf
https://demufejaxesogop.weebly.com/uploads/1/3/4/5/134588496/8840088.pdf
http://bezagsecurity.cz/userfiles/penupovapolok.pdf
http://himalayakebab.com/shipinc/userfiles/files/91452137680.pdf
http://cnsgafgl.netsociality.com/upload/files/67815999532.pdf
http://softtox.pl/new/userfiles/file/bomerirani.pdf
https://www.nrsa.tj/nrsa_system/ckeditor/kcfinder/upload/files/xuwesaxalifobe.pdf
http://www.a-fairys-choice.com/wp-content/plugins/formcraft/file-upload/server/content/files/16265f390a0a17---bijixezidutozabesafobimex.pdf
https://zejabunu.weebly.com/uploads/1/3/4/7/134719965/rizus_denakunati.pdf
http://tefen67.com/userfiles/files/febemufevixifanexur.pdf
https://tekartltd.com/upload/files/wukowujobe.pdf
http://tw-echen.com/uploads/files/202204130331231241.pdf

